Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations

被引:47
作者
Ma, Jie [1 ,2 ,3 ]
Michaelides, Angelos [2 ,3 ,4 ]
Alfe, Dario [3 ,4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] UCL, Dept Chem, London WC1E 6BT, England
[3] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[4] UCL, Thomas Young Ctr UCL, London WC1E 6BT, England
[5] UCL, Dept Earth Sci, London WC1E 6BT, England
[6] UCL, Dept Phys & Astron, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
DENSITY-FUNCTIONAL-THEORY; AUGMENTED-WAVE METHOD; GRAPHITE SURFACE; PSEUDOPOTENTIALS; ATOMS; PHYSISORPTION; SIMULATIONS; DIFFUSION;
D O I
10.1063/1.3569134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum Monte Carlo calculations with the diffusion Monte Carlo (DMC) method have been used to compute the binding energy curves of hydrogen on benzene, coronene, and graphene. The DMC results on benzene agree with both Moller-Plessett second order perturbation theory (MP2) and coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] calculations, giving an adsorption energy of similar to 25 meV. For coronene, DMC agrees well with MP2, giving an adsorption energy of similar to 40 meV. For physisorbed hydrogen on graphene, DMC predicts a very small adsorption energy of only 5 +/- 5 meV. Density functional theory (DFT) calculations with various exchange-correlation functionals, including van der Waals corrected functionals, predict a wide range of binding energies on all three systems. The present DMC results are a step toward filling the gap in accurate benchmark data on weakly bound systems. These results can help us to understand the performance of current DFT based methods, and may aid in the development of improved approaches. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3569134]
引用
收藏
页数:6
相关论文
共 39 条
[1]   Efficient localized basis set for quantum Monte Carlo calculations on condensed matter -: art. no. 161101 [J].
Alfè, D ;
Gillan, MJ .
PHYSICAL REVIEW B, 2004, 70 (16) :1-4
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Physisorption and diffusion of hydrogen atoms on graphite from correlated calculations on the H-coronene model system [J].
Bonfanti, Matteo ;
Martinazzo, Rocco ;
Tantardini, Gian Franco ;
Ponti, Alessandro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (16) :5825-5829
[4]   Beyond the locality approximation in the standard diffusion Monte Carlo method [J].
Casula, Michele .
PHYSICAL REVIEW B, 2006, 74 (16)
[5]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[6]   van der Waals interactions between thin metallic wires and layers [J].
Drummond, N. D. ;
Needs, R. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[7]   Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment [J].
Elstner, M ;
Hobza, P ;
Frauenheim, T ;
Suhai, S ;
Kaxiras, E .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (12) :5149-5155
[8]   On the performance of van der Waals corrected-density functional theory in describing the atomic hydrogen physisorption on graphite [J].
Ferullo, Ricardo M. ;
Domancich, Nicolas F. ;
Castellani, Norberto J. .
CHEMICAL PHYSICS LETTERS, 2010, 500 (4-6) :283-286
[9]   Quantum Monte Carlo calculations of H2 dissociation on Si(001) -: art. no. 166102 [J].
Filippi, C ;
Healy, SB ;
Kratzer, P ;
Pehlke, E ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (16) :166102/1-166102/4
[10]   Quantum Monte Carlo simulations of solids [J].
Foulkes, WMC ;
Mitas, L ;
Needs, RJ ;
Rajagopal, G .
REVIEWS OF MODERN PHYSICS, 2001, 73 (01) :33-83