A Test Setup for the Characterization of Lorentz-Force MEMS Magnetometers

被引:2
|
作者
Maria Sanchez-Chiva, Josep [1 ,2 ]
Valle, Juan [2 ]
Fernandez, Daniel [3 ]
Madrenas, Jordi [2 ]
机构
[1] Sorbonne Univ, UMR7606, LIP6, CNRS, Paris, France
[2] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain
[3] Univ Autonoma Barcelona, Inst Fis Altes Energies IFAE BIST, Fac Ciencies Nord, Edifici Cn, Bellaterra 08193, Spain
来源
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS | 2021年 / 2卷
关键词
Micromechanical devices; Frequency modulation; Magnetometers; Circuits and systems; Instruments; Wires; Resonant frequency; Microelectromechanical systems; MEMS; magnetic sensor; magnetometer; Lorentz-force; device characterization; test setup; MEMS measurement;
D O I
10.1109/OJCAS.2021.3099869
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lorentz-force MEMS magnetometers are interesting candidates for the replacement of magnetometers in consumer electronics products. Plenty of works in the literature propose MEMS magnetometers, their readout circuits and modulations. However, during the standalone characterization of such MEMS devices, a great variety of instruments and strategies are used, making it very complex to compare results from different works in the literature. For this reason, this article proposes a test setup to characterize Lorentz-force MEMS magnetometers. The proposed setup is based around the use of an impedance analyzer for the driving of voltage and Lorentz-current of the MEMS in-phase and in quadrature, which allows the device Amplitude Modulation and Frequency Modulation characterization. The proposed solution is validated by using the designed circuit to characterize two CMOS-MEMS magnetometers with very different characteristics.
引用
收藏
页码:587 / 596
页数:10
相关论文
共 50 条
  • [31] Numerical evidence for Lorentz-force independent dissipation in layered superconductors
    Chen, QH
    Luo, MB
    Nie, QM
    Hu, X
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 412 : 422 - 424
  • [32] A MEMS RESONANT LORENTZ-FORCE MAGNETOMETER WITH BOTH STRUCTURAL TOPOLOGY OPTIMIZATION AND PARAMETRIC PUMPING FOR Q-FACTOR ENHANCEMENT
    Song, Xiaoxiao
    Gao, Lu
    Xi, Jingqian
    Wang, Chen
    Li, Fangzheng
    Xu, Lei
    Wang, Yuan
    Liu, Huafeng
    Zhao, Chun
    Kuang, Shuangyang
    Tu, Liang-Cheng
    Kraft, Michael
    2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 947 - 950
  • [33] A lorentz-force actuated autoloading needle-free rnjector
    Hemond, Brian D.
    Wendell, Dawn M.
    Hogan, N. Cathy
    Taberner, Andrew J.
    Hunter, Ian W.
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 2318 - +
  • [34] Lorentz-force gyrator based on AlScN piezoelectric thin film
    Shao, Shuai
    Luo, Zhifang
    Liu, Kangfu
    Wu, Tao
    APPLIED PHYSICS LETTERS, 2022, 121 (21)
  • [35] Optimization of Periodic Permanent Magnet Configuration in Lorentz-Force EMATs
    Benegal, Rishikesh
    Karimi, Fatemeh
    Filleter, Tobin
    Sinclair, Anthony N.
    RESEARCH IN NONDESTRUCTIVE EVALUATION, 2018, 29 (02) : 95 - 108
  • [36] A CMOS-MEMS BEOL 2-axis Lorentz-Force Magnetometer with Device-Level Offset Cancellation
    Sanchez-Chiva, Josep Maria
    Valle, Juan
    Fernandez, Daniel
    Madrenas, Jordi
    SENSORS, 2020, 20 (20) : 1 - 21
  • [37] Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations
    Pollock, George E.
    Gangestad, Joseph W.
    Longuski, James M.
    ACTA ASTRONAUTICA, 2011, 68 (1-2) : 204 - 217
  • [38] EFFECT OF THE AXIAL COMPONENT OF THE LORENTZ-FORCE ON TRAINING AND DEGRADATION OF SUPERCONDUCTING COILS
    ANASHKIN, OP
    GLYTENKO, AL
    KEILIN, VE
    KRIVIKH, AV
    CRYOGENICS, 1982, 22 (02) : 94 - 96
  • [39] Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
    Hvasta, M. G.
    Dudt, D.
    Fisher, A. E.
    Kolemen, E.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (07)
  • [40] MEMS ABOVE CMOS PROCESS FOR SINGLE PROOF-MASS 3-AXIS LORENTZ-FORCE RESONANT MAGNETIC SENSOR
    Sung, W. L.
    Lee, F. Y.
    Cheng, C. L.
    Chang, C. I.
    Cheng, E.
    Fang, W.
    2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2016, : 978 - 981