A Test Setup for the Characterization of Lorentz-Force MEMS Magnetometers

被引:2
|
作者
Maria Sanchez-Chiva, Josep [1 ,2 ]
Valle, Juan [2 ]
Fernandez, Daniel [3 ]
Madrenas, Jordi [2 ]
机构
[1] Sorbonne Univ, UMR7606, LIP6, CNRS, Paris, France
[2] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain
[3] Univ Autonoma Barcelona, Inst Fis Altes Energies IFAE BIST, Fac Ciencies Nord, Edifici Cn, Bellaterra 08193, Spain
来源
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS | 2021年 / 2卷
关键词
Micromechanical devices; Frequency modulation; Magnetometers; Circuits and systems; Instruments; Wires; Resonant frequency; Microelectromechanical systems; MEMS; magnetic sensor; magnetometer; Lorentz-force; device characterization; test setup; MEMS measurement;
D O I
10.1109/OJCAS.2021.3099869
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lorentz-force MEMS magnetometers are interesting candidates for the replacement of magnetometers in consumer electronics products. Plenty of works in the literature propose MEMS magnetometers, their readout circuits and modulations. However, during the standalone characterization of such MEMS devices, a great variety of instruments and strategies are used, making it very complex to compare results from different works in the literature. For this reason, this article proposes a test setup to characterize Lorentz-force MEMS magnetometers. The proposed setup is based around the use of an impedance analyzer for the driving of voltage and Lorentz-current of the MEMS in-phase and in quadrature, which allows the device Amplitude Modulation and Frequency Modulation characterization. The proposed solution is validated by using the designed circuit to characterize two CMOS-MEMS magnetometers with very different characteristics.
引用
收藏
页码:587 / 596
页数:10
相关论文
共 50 条
  • [21] Lorentz-force transduction for RF micromechanical filters
    Forouzanfar, Sepehr
    Mansour, Raafat
    Abdel-Rahman, Eihab
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (03)
  • [22] Experimental calibration procedures for rotating Lorentz-force flowmeters
    Hvasta, M. G.
    Slighton, N. T.
    Kolemen, E.
    Fisher, A. E.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (08)
  • [23] CRITICAL CURRENTS AND LORENTZ-FORCE MODEL IN NIOBIUM STANNIDE
    CODY, GD
    CULLEN, GW
    RCA REVIEW, 1964, 25 (03): : 466 - 478
  • [24] Hidden momentum in a hydrogen atom and the Lorentz-force law
    Oliveira Filho, J. S.
    Saldanha, Pablo L.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [25] Development of a Lorentz-force Actuated Intravitreal Jet Injector
    White, James E.
    Chang, Jean H.
    Hogan, N. Catherine
    Hunter, Ian W.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 984 - 987
  • [26] Sensitivity Enhancement of Lorentz Force MEMS Resonant Magnetometers via Internal Thermal-Piezoresistive Amplification
    Mehdizadeh, Emad
    Kumar, Varun
    Pourkamali, Siavash
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (02) : 268 - 270
  • [27] Lorentz-force dependence of the critical current for SmBCO coated conductor
    Oh, Sangjun
    Lee, Chulhee
    Cho, Kyuhwan
    Lee, Sangmoo
    Youm, Dojun
    Journal of Applied Physics, 2008, 104 (08):
  • [28] Internal-current Lorentz-force Heating of Astrophysical Objects
    Chyba, Christopher F.
    Hand, Kevin P.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 922 (02)
  • [29] A Lorentz force MEMS magnetometer
    Pala, Sedat
    Cicek, Meltem
    Azgin, Kivanc
    2016 IEEE SENSORS, 2016,
  • [30] Lorentz-force dependence of the critical current for SmBCO coated conductor
    Oh, Sangjun
    Lee, Chulhee
    Cho, Kyuhwan
    Lee, Sangmoo
    Youm, Dojun
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)