Dominating direct products of graphs

被引:22
作者
Bresar, Bostjan [1 ]
Klavzar, Sandi [2 ]
Rall, Douglas F. [3 ]
机构
[1] Univ Maribor, FEECS, Maribor 2000, Slovenia
[2] Univ Maribor, Dept Math & Comp Sci, Maribor 2000, Slovenia
[3] Furman Univ, Dept Math, Greenville, SC USA
关键词
domination; paired-domination; upper domination; direct product;
D O I
10.1016/j.disc.2006.09.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An upper bound for the domination number of the direct product of graphs is proved. It in particular implies that for any graphs G and H, gamma(G x H) <= 3 gamma(G)gamma(H). Graphs with arbitrarily large domination numbers are constructed for which this bound is attained. Concerning the upper domination number we prove that Gamma(G x H) >= Gamma(G)Gamma(H), thus confirming a conjecture from [R. Nowakowski, D. F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79]. Finally, for paired-domination of direct products we prove that gamma(pr)(G x H) <= gamma(pr)(G) <= gamma(pr)(H) for arbitrary graphs G and H, and also present some infinite families of graphs that attain this bound. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1636 / 1642
页数:7
相关论文
共 20 条
[1]  
Abay-Asmerom G, 2005, ARS COMBINATORIA, V74, P201
[2]  
BRESAR B, 2005, ELECTRON J COMB, V12, P101
[3]   Domination number of the cross product of paths [J].
Chérifi, R ;
Gravier, S ;
Lagraula, X ;
Payan, C ;
Zighem, I .
DISCRETE APPLIED MATHEMATICS, 1999, 94 (1-3) :101-139
[4]  
Dorbec P., 2006, Discussiones Mathematicae Graph Theory, V26, P103, DOI 10.7151/dmgt.1305
[5]  
ELZAHAR M, 2004, CAHIERS LAB LEIBNIZ, V97
[6]   ON THE DOMINATION NUMBER OF CROSS PRODUCTS OF GRAPHS [J].
GRAVIER, S ;
KHELLADI, A .
DISCRETE MATHEMATICS, 1995, 145 (1-3) :273-277
[7]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[8]  
Haynes TW, 1998, NETWORKS, V32, P199, DOI 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO
[9]  
2-F
[10]   Smallest independent dominating sets in Kronecker products of cycles [J].
Jha, PK .
DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) :303-306