Feedback ansatz for adaptive-feedback quantum metrology training with machine learning

被引:35
作者
Peng, Yi [1 ,2 ]
Fan, Heng [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SCHRODINGER CAT STATES; GENERATION; LIMIT;
D O I
10.1103/PhysRevA.101.022107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is challenging to construct metrology schemes which harness quantum features such as entanglement and coherence to surpass the standard quantum limit. We propose an ansatz for devising an adaptive-feedback quantum metrology (AFQM) strategy which greatly reduces the searching space. Combined with the Markovian feedback assumption, the computational complexity for designing AFQM would be reduced from N-7 to N-4, for N probing systems. The feedback scheme devising via machine learning such as particle-swarm optimization and differential evolution would thus require much less time and produce equally good imprecision scaling. We have thus devised an AFQM for the 207-partite system. The imprecision scaling would persist for N > 207 in an admirable range when the parameter setting for the 207-partite system is employed without further training Our ansatz indicates an built-in resilience of the feedback strategy against qubit loss. The feedback strategies designed for the noiseless scenarios have been tested against the qubit loss noise and the phase fluctuation noise. Our numerical result confirms great resilience of the feedback strategies against the two kinds of noise.
引用
收藏
页数:7
相关论文
共 73 条
  • [1] Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
  • [2] Measurement-based adaptation protocol with quantum reinforcement learning
    Albarran-Arriagada, F.
    Retamal, J. C.
    Solano, E.
    Lamata, L.
    [J]. PHYSICAL REVIEW A, 2018, 98 (04)
  • [3] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [4] Berry D. W., 2001, THESIS
  • [5] Optimal states and almost optimal adaptive measurements for quantum interferometry
    Berry, DW
    Wiseman, HM
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (24) : 5098 - 5101
  • [6] Optimal input states and feedback for interferometric phase estimation
    Berry, DW
    Wiseman, HM
    Breslin, JK
    [J]. PHYSICAL REVIEW A, 2001, 63 (05): : 11
  • [7] Optimal frequency measurements with maximally correlated states
    Bollinger, JJ
    Itano, WM
    Wineland, DJ
    Heinzen, DJ
    [J]. PHYSICAL REVIEW A, 1996, 54 (06): : R4649 - R4652
  • [8] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [9] On the general problem of quantum phase estimation
    D'Ariano, GM
    Macchiavello, C
    Sacchi, ME
    [J]. PHYSICS LETTERS A, 1998, 248 (2-4) : 103 - 108
  • [10] Quantum sensing
    Degen, C. L.
    Reinhard, F.
    Cappellaro, P.
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (03)