The threshold of effective damping for semilinear wave equations

被引:82
作者
D'Abbicco, Marcello [1 ]
机构
[1] Univ Sao Paulo, Dept Comp & Matemat, FFCLRP, BR-14040901 Ribeirao Preto, SP, Brazil
关键词
semilinear equations; global existence; effective damping; damped waves; scale-invariant; propagation speed; critical exponent; BLOW-UP; R-N;
D O I
10.1002/mma.3126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the global existence of small data solutions to the Cauchy problem U-tt - Delta u + mu/1+t u(t) = vertical bar u vertical bar(p) u(o,x) = u(0)(x), u(t)(o,x) = u(1)(x) in space dimensionn1, forp>1+2/n, where is sufficiently large. We obtain estimates for the solution and its energy with the same decay rate of the linear problem. In particular, for2+n, the damping term is effective with respect to the L-1-L-2 low-frequency estimates for the solution and its energy. In this case, we may prove global existence in any space dimensionn3, by assuming smallness of the initial data in some weighted energy space. In space dimensionn=1,2, we only assume smallness of the data in some Sobolev spaces, and we introduce an approach based on fractional Sobolev embedding to improve the threshold for global existence to5/3 in space dimensionn=1 and to3 in space dimensionn=2. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1032 / 1045
页数:14
相关论文
共 23 条
[1]  
Bohme C., 2012, ANN U FERRARA SEZ 7, V58, P229
[2]  
Bui T.B.N, 2014, TRENDS MATH, P9
[3]   An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 :16-34
[4]   The influence of a nonlinear memory on the damped wave equation [J].
D'Abbicco, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :130-145
[5]   A class of dissipative wave equations with time-dependent speed and damping [J].
D'Abbicco, M. ;
Ebert, M. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) :315-332
[6]  
D'Abbicco M, 2013, ADV NONLINEAR STUD, V13, P867
[7]   Semi-linear wave equations with effective damping [J].
D'Abbicco, Marcello ;
Lucente, Sandra ;
Reissig, Michael .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) :345-380
[8]  
DABBICCO M, 2013, DISCRETE CONT S NOV, P183
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data [J].
Ikehata, R ;
Tanizawa, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (07) :1189-1208