U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets

被引:49
作者
Estienne, Theo [1 ,2 ]
Vakalopoulou, Maria [1 ]
Christodoulidis, Stergios [3 ]
Battistela, Enzo [1 ,2 ]
Lerousseau, Marvin [1 ,2 ]
Carre, Alexandre [2 ]
Klausner, Guillaume [2 ]
Sun, Roger [1 ,2 ]
Robert, Charlotte [2 ]
Mougiakakou, Stavroula [3 ]
Paragios, Nikos [4 ]
Deutsch, Eric [2 ]
机构
[1] Univ Paris Saclay, Cent Supelec, Lab MICS, F-91190 Gif Sur Yvette, France
[2] Paris Saclay Univ, Paris Sud Univ, INSERM, Mol Radiotherapy,Gustave Roussy,U1030, Villejuif, France
[3] Univ Bern, ARTORG Ctr Biomed Engn Res, CH-3008 Bern, Switzerland
[4] TheraPanacea, Epiniere Sante Cochin, Paris, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III | 2019年 / 11766卷
关键词
Image registration; Deformable registration; Brain tumor segmentation; 3D convolutional neural networks;
D O I
10.1007/978-3-030-32248-9_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we propose a 3D deep neural network called U-ReSNet, a joint framework that can accurately register and segment medical volumes. The proposed network learns to automatically generate linear and elastic deformation models, trained by minimizing the mean square error and the local cross correlation similarity metrics. In parallel, a coupled architecture is integrated, seeking to provide segmentation maps for anatomies or tissue patterns using an additional decoder part trained with the dice coefficient metric. U-ReSNet is trained in an end to end fashion, while due to this joint optimization the generated network features are more informative leading to promising results compared to other deep learning-based methods existing in the literature. We evaluated the proposed architecture using the publicly available OASIS 3 dataset, measuring the dice coefficient metric for both registration and segmentation tasks. Our promising results indicate the potentials of our method which is composed from a convolutional architecture that is extremely simple and light in terms of parameters.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 18 条
[1]   VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images [J].
Chen, Hao ;
Dou, Qi ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
NEUROIMAGE, 2018, 170 :446-455
[2]   Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration [J].
Dalca, Adrian V. ;
Balakrishnan, Guha ;
Guttag, John ;
Sabuncu, Mert R. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :729-738
[3]   Efficient Groupwise Registration for Brain MRI by Fast Initialization [J].
Dong, Pei ;
Cao, Xiaohuan ;
Zhang, Jun ;
Kim, Minjeong ;
Wu, Guorong ;
Shen, Dinggang .
MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 :150-158
[4]   Scalable joint segmentation and registration framework for infant brain images [J].
Dong, Pei ;
Wang, Li ;
Lina, Weili ;
Shen, Dinggang ;
Wu, Guorong .
NEUROCOMPUTING, 2017, 229 :54-62
[5]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[6]  
Glocker B, 2009, LECT NOTES COMPUT SC, V5636, P540, DOI 10.1007/978-3-642-02498-6_45
[7]   Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults [J].
Marcus, Daniel S. ;
Fotenos, Anthony F. ;
Csernansky, John G. ;
Morris, John C. ;
Buckner, Randy L. .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2010, 22 (12) :2677-2684
[8]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[9]  
Parisot S, 2012, LECT NOTES COMPUT SC, V7511, P651, DOI 10.1007/978-3-642-33418-4_80
[10]   Combined Volumetric and Surface Registration [J].
Postelnicu, Gheorghe ;
Zoellei, Lilla ;
Fischl, Bruce .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (04) :508-522