Submanifolds with constant scalar curvature in a space form

被引:7
作者
Araujo, Jogli G. [1 ]
de Lima, Henrique F. [1 ]
dos Santos, Fabio R. [1 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Brazil
关键词
Riemannian space forms; Complete submanifolds; Parallel normalized mean curvature vector field; Constant normalized scalar curvature; Clifford torus; Circular and hyperbolic cylinders; MEAN-CURVATURE; RIEMANNIAN-MANIFOLDS; HYPERSURFACES; SPHERE;
D O I
10.1016/j.jmaa.2016.10.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with complete submanifolds M-n having constant positive scalar curvature and immersed with parallel normalized mean curvature vector field in a Riemannian space form Q(c)(n+P) of constant sectional curvature c is an element of {1, 0, -1}. In this setting, we show that such a submanifold M-n must be either totally umbilical or isometric to a Clifford torus S-1 (root 1 - r(2)) x Sn-1(r), when c = 1, a circular cylinder R x Sn-1(r), when c = 0, or a hyperbolic cylinder H-1 (-root 1 + r(2)) x Sn-1(r), when c = -1. This characterization theorem corresponds to a natural improvement of previous ones due to Alias, Garcia-Martinez and Rigoli [2], Cheng [4] and Guo and Li [6]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:488 / 498
页数:11
相关论文
共 13 条
[1]  
Alfas L.J., 2012, ANN GLOB ANAL GEOM, V41, P307
[2]   On the scalar curvature of constant mean curvature hypersurfaces in space forms [J].
Alias, Luis J. ;
Carolina Garcia-Martinez, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) :579-587
[3]   Complete hypersurfaces with constant scalar curvature in spheres [J].
Brasil, Aldir, Jr. ;
Gervasio Colares, A. ;
Palmas, Oscar .
MONATSHEFTE FUR MATHEMATIK, 2010, 161 (04) :369-380
[4]   Submanifolds with constant scalar curvature [J].
Cheng, QM .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :1163-1183
[5]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[6]   SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE IN A UNIT SPHERE [J].
Guo, Xi ;
Li, Haizhong .
TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (03) :331-339
[7]  
LI AM, 1992, ARCH MATH, V58, P582
[8]  
Li HZ, 1996, MATH ANN, V305, P665
[9]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+
[10]  
Pigola S., 2005, Mem. Am. Math. Soc., V822