Optimizing neural networks for river flow forecasting - Evolutionary Computation methods versus the Levenberg-Marquardt approach

被引:88
作者
Piotrowski, Adam P. [1 ]
Napiorkowski, Jaroslaw J. [1 ]
机构
[1] Polish Acad Sci, Inst Geophys, PL-01452 Warsaw, Poland
关键词
Rainfall-runoff modeling; Neural networks; Evolutionary Computation; Levenberg-Marquardt algorithm; Differential Evolution; Particle Swarm Optimization; PARTICLE SWARM OPTIMIZATION; ANT COLONY OPTIMIZATION; CHAOTIC TIME-SERIES; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; GLOBAL OPTIMIZATION; TRAINING ALGORITHM; MODEL TREES; PREDICTION; BACKPROPAGATION;
D O I
10.1016/j.jhydrol.2011.06.019
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Although neural networks have been widely applied to various hydrological problems, including river flow forecasting, for at least 15 years, they have usually been trained by means of gradient-based algorithms. Recently nature inspired Evolutionary Computation algorithms have rapidly developed as optimization methods able to cope not only with non-differentiable functions but also with a great number of local minima. Some of proposed Evolutionary Computation algorithms have been tested for neural networks training, but publications which compare their performance with gradient-based training methods are rare and present contradictory conclusions. The main goal of the present study is to verify the applicability of a number of recently developed Evolutionary Computation optimization methods, mostly from the Differential Evolution family, to multi-layer perceptron neural networks training for daily rainfall-runoff forecasting. In the present paper eight Evolutionary Computation methods, namely the first version of Differential Evolution (DE), Distributed DE with Explorative-Exploitative Population Families, Self-Adaptive DE, DE with Global and Local Neighbors, Grouping DE, JADE, Comprehensive Learning Particle Swarm Optimization and Efficient Population Utilization Strategy Particle Swarm Optimization are tested against the Levenberg-Marquardt algorithm - probably the most efficient in terms of speed and success rate among gradient-based methods. The Annapolis River catchment was selected as the area of this study due to its specific climatic conditions, characterized by significant seasonal changes in runoff, rapid floods, dry summers, severe winters with snowfall, snow melting, frequent freeze and thaw, and presence of river ice - conditions which make flow forecasting more troublesome. The overall performance of the Levenberg-Marquardt algorithm and the DE with Global and Local Neighbors method for neural networks training turns out to be superior to other Evolutionary Computation-based algorithms. The Levenberg-Marquardt optimization must be considered as the most efficient one due to its speed. Its drawback due to possible sticking in poor local optimum can be overcome by applying a multi-start approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 27
页数:16
相关论文
共 126 条
[1]   AN INTRODUCTION TO THE EUROPEAN HYDROLOGICAL SYSTEM - SYSTEME HYDROLOGIQUE EUROPEEN, SHE .2. STRUCTURE OF A PHYSICALLY-BASED, DISTRIBUTED MODELING SYSTEM [J].
ABBOTT, MB ;
BATHURST, JC ;
CUNGE, JA ;
OCONNELL, PE ;
RASMUSSEN, J .
JOURNAL OF HYDROLOGY, 1986, 87 (1-2) :61-77
[2]   Timing error correction procedure applied to neural network rainfall-runoff modelling [J].
Abrahart, Robert J. ;
Heppenstall, Alison J. ;
See, Linda M. .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2007, 52 (03) :414-431
[3]   Comparison of Multivariate Regression and Artificial Neural Networks for Peak Urban Water-Demand Forecasting: Evaluation of Different ANN Learning Algorithms [J].
Adamowski, Jan ;
Karapataki, Christina .
JOURNAL OF HYDROLOGIC ENGINEERING, 2010, 15 (10) :729-743
[4]   Interpretation of spontaneous potential anomalies from some simple geometrically shaped bodies using neural network inversion [J].
Al-Garni, Mansour A. .
ACTA GEOPHYSICA, 2010, 58 (01) :143-162
[5]   Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks [J].
Aliev, R. A. ;
Guirimov, B. G. ;
Fazlollahi, Bijan ;
Aliev, R. R. .
FUZZY SETS AND SYSTEMS, 2009, 160 (17) :2553-2566
[6]  
[Anonymous], NUMERICAL RECIPES FO
[7]   Large area hydrologic modeling and assessment - Part 1: Model development [J].
Arnold, JG ;
Srinivasan, R ;
Muttiah, RS ;
Williams, JR .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 1998, 34 (01) :73-89
[8]   An application of artificial intelligence for rainfall-runoff modeling [J].
Aytek, Ali ;
Asce, M. ;
Alp, Murat .
JOURNAL OF EARTH SYSTEM SCIENCE, 2008, 117 (02) :145-155
[9]   The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network [J].
Bartlett, PL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) :525-536
[10]   Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks [J].
Bashir, Z. A. ;
El-Hawary, M. E. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (01) :20-27