On Dirichlet L-functions with periodic coefficients and Eisenstein series

被引:15
作者
Alkan, Emre [1 ]
机构
[1] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
来源
MONATSHEFTE FUR MATHEMATIK | 2011年 / 163卷 / 03期
关键词
Periodic functions; Dirichlet L-functions; Lipschitz type summation formula; Dedekind eta function; Eisenstein series; Fourier coefficients; DEDEKIND ETA-FUNCTIONS; CLASS-NUMBER PROBLEMS; TRIGONOMETRIC SUMS; FOURIER EXPANSION; MODULAR-FORMS; HECKE EIGENVALUES; SIEVE-METHODS; GAPS; RAMANUJAN; NEWFORMS;
D O I
10.1007/s00605-010-0211-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Lipschitz type summation formula with periodic coefficients. Using this formula, representations of the values at positive integers of Dirichlet L-functions with periodic coefficients are obtained in terms of Bernoulli numbers and certain sums involving essentially the discrete Fourier transform of the periodic function forming the coefficients. The non-vanishing of these L-functions at s = 1 are then investigated. There are additional applications to the Fourier expansions of Eisenstein series over congruence subgroups of SL(2)(Z) and derivatives of such Eisenstein series. Examples of a family of Eisenstein series with a high frequency of vanishing Fourier coefficients are given.
引用
收藏
页码:249 / 280
页数:32
相关论文
共 55 条
[1]   VARIATIONS ON WOLSTENHOLMES THEOREM [J].
ALKAN, E .
AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (10) :1001-1004
[2]   On the sizes of gaps in the Fourier expansion of modular forms [J].
Alkan, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (03) :449-470
[3]   Nonvanishing of Fourier coefficients of newforms in progressions [J].
Alkan, E ;
Zaharescu, A .
ACTA ARITHMETICA, 2005, 116 (01) :81-98
[4]   Nonvanishing of Fourier coefficients of modular forms [J].
Alkan, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) :1673-1680
[5]  
ALKAN E, VALUES DIRICHLET L F
[6]   On the gaps in the Fourier expansion of cusp forms [J].
Alkan, Emre ;
Zaharescu, Alexandru .
RAMANUJAN JOURNAL, 2008, 16 (01) :41-52
[7]   Quotients of values of the Dedekind Eta function [J].
Alkan, Emre ;
Xiong, Maosheng ;
Zaharescu, Alexandru .
MATHEMATISCHE ANNALEN, 2008, 342 (01) :157-176
[8]   Consecutive large gaps in sequences defined by multiplicative constraints [J].
Alkan, Emre ;
Zaharescu, Alexandru .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (02) :172-181
[9]   NONVANISHING OF THE RAMANUJAN TAU FUNCTION IN SHORT INTERVALS [J].
Alkan, Emre ;
Zaharescu, Alexandru .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (01) :45-51
[10]   Average size of gaps in the Fourier expansion of modular forms [J].
Alkan, Emre .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (02) :207-215