Robust visual tracking with correlation filters and metric learning

被引:62
作者
Yuan, Di [1 ]
Kang, Wei [1 ]
He, Zhenyu [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Correlation filters; Metric learning; Hard negative mining; OBJECT TRACKING; NETWORKS; REGION;
D O I
10.1016/j.knosys.2020.105697
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discriminative correlation filters (DCFs) have been widely used in the visual tracking community in recent years. The DCFs-based trackers determine the target location through a response map generated by the correlation filters and determine the target scale by a fixed scale factor. However, the response map is vulnerable to noise interference and the fixed scale factor also cannot reflect the real scale change of the target, which can obviously reduce the tracking performance. In this paper, to solve the aforementioned drawbacks, we propose to learn a metric learning model in correlation filters framework for visual tracking (called CFML). This model can use a metric learning function to solve the target scale problem. In particular, we adopt a hard negative mining strategy to alleviate the influence of the noise on the response map, which can effectively improve the tracking accuracy. Extensive experimental results demonstrate that the proposed CFML tracker achieves competitive performance compared with the state-of-the-art trackers. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 77 条
[1]   Deformable part-based tracking by coupled global and local correlation filters [J].
Akin, Osman ;
Erdem, Erkut ;
Erdem, Aykut ;
Mikolajczyk, Krystian .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 :763-774
[2]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[3]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[4]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[5]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[6]   Visual Tracking with Multilevel Sparse Representation and Metric Learning [J].
Chen, Baifan ;
Peng, Meng ;
Liu, Lijue ;
Lu, Tao .
JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2018, 11 (02) :1-12
[7]  
Chen GD, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), P182, DOI 10.1109/ISI.2017.8004905
[8]   Context-aware Deep Feature Compression for High-speed Visual Tracking [J].
Choi, Jongwon ;
Chang, Hyung Jin ;
Fischer, Tobias ;
Yun, Sangdoo ;
Lee, Kyuewang ;
Jeong, Jiyeoup ;
Demiris, Yiannis ;
Choi, Jin Young .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :479-488
[9]   Attentional Correlation Filter Network for Adaptive Visual Tracking [J].
Choi, Jongwon ;
Chang, Hyung Jin ;
Yun, Sangdoo ;
Fischer, Tobias ;
Demiris, Yiannis ;
Choi, Jin Young .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4828-4837
[10]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939