Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators

被引:3
作者
Ichiki, Akihisa [1 ]
Okumura, Keiji [2 ]
机构
[1] Nagoya Univ, Inst Innovat Future Soc, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
[2] Hitotsubashi Univ, Inst Econ Res, Kunitachi, Tokyo 1868603, Japan
关键词
SYNCHRONIZATION; POPULATIONS; MODEL;
D O I
10.1103/PhysRevE.101.022211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Ott-Antonsen ansatz is a powerful tool to extract the behaviors of coupled phase oscillators, but it imposes a strong restriction on the initial condition. Herein, an extension of the Ott-Antonsen ansatz is proposed to relax the restriction, enabling the systematic approximation of the behavior of a globally coupled phase oscillator system with an arbitrary initial condition. The proposed method is validated on the Kuramoto-Sakaguchi model of identical phase oscillators. The method yields cluster and chimera-like solutions that are not obtained by the conventional ansatz.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[3]   Stability diagram for the forced Kuramoto model [J].
Childs, Lauren M. ;
Strogatz, Steven H. .
CHAOS, 2008, 18 (04)
[4]   Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids [J].
Coletta, Tommaso ;
Jacquod, Philippe .
PHYSICAL REVIEW E, 2016, 93 (03)
[5]  
Díaz-Guilera A, 2008, LECT NOTES COMPUT SC, V5151, P184
[6]   Synchronization in complex networks of phase oscillators: A survey [J].
Doerfler, Florian ;
Bullo, Francesco .
AUTOMATICA, 2014, 50 (06) :1539-1564
[7]   Collective mode reductions for populations of coupled noisy oscillators [J].
Goldobin, Denis S. ;
Tyulkina, Irina V. ;
Klimenko, Lyudmila S. ;
Pikovsky, Arkady .
CHAOS, 2018, 28 (10)
[8]   CLUSTERING IN GLOBALLY COUPLED PHASE OSCILLATORS [J].
GOLOMB, D ;
HANSEL, D ;
SHRAIMAN, B ;
SOMPOLINSKY, H .
PHYSICAL REVIEW A, 1992, 45 (06) :3516-3530
[9]   Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise [J].
Gong, Chen Chris ;
Zheng, Chunming ;
Toenjes, Ralf ;
Pikoysky, Arkady .
CHAOS, 2019, 29 (03)
[10]   Macroscopic models for networks of coupled biological oscillators [J].
Hannay, Kevin M. ;
Forger, Daniel B. ;
Booth, Victoria .
SCIENCE ADVANCES, 2018, 4 (08)