Fundamental matrix solutions of piecewise smooth differential systems

被引:32
作者
Dieci, Luca [1 ]
Lopez, Luciano [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
Piecewise smooth dynamical systems; Filippov; Sliding modes; Fundamental matrix; GENETIC REGULATORY NETWORKS; SLIDING MODES; SURFACES;
D O I
10.1016/j.matcom.2010.10.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the fundamental matrix solution associated to piecewise smooth differential systems of Filippov type, in which the vector field varies discontinuously as solution trajectories reach one or more surfaces. We review the cases of transversal intersection and of sliding motion on one surface. We also consider the case when sliding motion takes place on the intersection of two or more surfaces. Numerical results are also given. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:932 / 953
页数:22
相关论文
共 27 条
[1]  
Acary V, 2008, LECT NOTES APPL COMP
[2]  
AIZERMAN MA, 1958, PMM-J APPL MATH MEC, P1065
[3]  
Alexander JC, 1998, HOUSTON J MATH, V24, P545
[4]  
[Anonymous], 1978, SLIDING MODES THEIR
[5]  
[Anonymous], 2011, PROC IFAC WORLD C
[6]  
[Anonymous], 2004, DYNAMICS BIFURCATION
[7]  
[Anonymous], 2000, THESIS TU EINDHOVEN
[8]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI
[9]   The simplex method for nonlinear sliding mode control [J].
Bartolini, G ;
Parodi, F ;
Utkin, VI ;
Zolezzi, T .
MATHEMATICAL PROBLEMS IN ENGINEERING, 1999, 4 (06) :461-487
[10]   LINEARIZATION OF DAES ALONG TRAJECTORIES [J].
CAMPBELL, SL .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (01) :70-84