Sierpinski gasket in a reaction-diffusion system

被引:63
|
作者
Hayase, Y [1 ]
Ohta, T
机构
[1] Ochanomizu Univ, Dept Phys, Tokyo 112, Japan
[2] Ochanomizu Univ, Grad Sch Humanities & Sci, Tokyo 112, Japan
关键词
D O I
10.1103/PhysRevLett.81.1726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We shall show by computer simulations that a Bonhoeffer van der Pol type reaction-diffusion system in one dimension reveals a curious spatiotemporal pattern in the motion of interacting pulses. For suitably chosen nonlinearity and parameters, the trajectory of pulses exhibits a self-similar regular pattern like a Sierpinski gasket in the space-time coordinate. This is caused by self-replication of a pulse and annihilation and/or preservation of propagating pulses upon collision. The formation of the Sierpinski gasket can be understood by mapping the time evolution of pulses to an equivalent cellular automaton. [S0031-9007(98)06956-7].
引用
收藏
页码:1726 / 1729
页数:4
相关论文
共 50 条
  • [41] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [42] Asymptotic behaviour in a reaction-diffusion system
    Huang, SX
    Xie, CH
    ACTA MATHEMATICA SCIENTIA, 1998, 18 (01) : 57 - 62
  • [43] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764
  • [44] BIFURCATIONS IN A BISTABLE REACTION-DIFFUSION SYSTEM
    EBELING, W
    MALCHOW, H
    ANNALEN DER PHYSIK, 1979, 36 (02) : 121 - 134
  • [45] The instantaneous limit of a reaction-diffusion system
    Bothe, D
    EVOLUTION EQUATIONS AND THEIR APPLICATIONS IN PHYSICAL AND LIFE SCIENCES, 2001, 215 : 215 - 224
  • [46] A Lyapunov function for a reaction-diffusion system
    Guedda, M
    Kirane, M
    APPLIED MATHEMATICS LETTERS, 1997, 10 (03) : 95 - 97
  • [47] GLOBAL DYNAMICS OF A REACTION-DIFFUSION SYSTEM
    You, Yuncheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [48] On a reaction-diffusion system of flocculation type
    Zermani, Samia
    Abdellatif, Nahla
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [49] Extinction of oscillation in a reaction-diffusion system
    Nagashima, H
    Mahara, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (02) : 365 - 368
  • [50] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)