Sharpening of the upper bound of the absolute constant in the Berry-Esseen inequality

被引:28
作者
Shevtsova, I. G. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Lab Math Stat, Dept Computat Math & Cybernet, Moscow 119992, Russia
关键词
Berry-Esseen inequality; central limit theorem; normal approximation; convergence rate estimate;
D O I
10.1137/S0040585X97982591
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The upper bound of the absolute constant in the classical Berry - Esseen inequality for sums of independent identically distributed random variables with finite third moments is lowered to C (<=) 0.7056.
引用
收藏
页码:549 / 553
页数:5
相关论文
共 16 条
  • [1] Bergström H, 1949, SKAND AKTUARIETIDSKR, V32, P37
  • [2] The accuracy of the Gaussian approximation to the sum of independent variates
    Berry, Andrew C.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 49 (1-3) : 122 - 136
  • [3] Esseen C.G., 1942, ARK MATH ASTR FYS A, V28, P1
  • [4] Esseen C-G., 1956, SKAND AKTUARIETIDSK, V39, P160, DOI DOI 10.1080/03461238.1956.10414946
  • [5] Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
  • [6] HSU PL, 1944, ANN MATH STAT, V16, P1
  • [7] Kolmogorov A. N., 1953, VESTNIK MGU, V7, P29
  • [8] PRAWITZ H, 1975, SCAND ACTUAR J, P145
  • [9] ROGOZIN BA, 1960, THEOR PROBAB APPL, V5, P114
  • [10] SHIGANOV IS, 1986, J SOVIET MATH, V35, P109