High-fidelity simulations in complex geometries: Towards better flow understanding and development of turbulence models

被引:13
作者
Vinuesa, Ricardo [1 ]
机构
[1] KTH Royal Inst Technol, Engn Mech, FLOW, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Computatioanl fluid dynamics; High-fidelity simulations; Turbulent flows; Spectral-element method; Geometrical complexity; Turbulence modelling; Data-driven methods; DIRECT NUMERICAL-SIMULATION; REYNOLDS-NUMBER; BOUNDARY-LAYERS; NEURAL-NETWORKS; CHANNEL FLOW; SQUARE DUCT; PIPE-FLOW; COHERENT STRUCTURES; SECONDARY MOTION; ASPECT RATIO;
D O I
10.1016/j.rineng.2021.100254
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present review shows a summary of current trends in high-fidelity simulations of turbulent flows in moderately complex geometries. These trends are put in the historical context of numerical simulations, starting with early weather predictions and continuing with seminal direct-numerical-simulation work. Here we discuss high-fidelity simulations conducted in a number of complex geometries, including ducts, pipes, wings and obstacles, and describe the potential of the spectral-element method (SEM) to carry out such simulations. Finally, we provide a number of future directions where novel data-driven methods can exploit the great wealth of highquality turbulence data in the literature.
引用
收藏
页数:11
相关论文
共 172 条
[1]   Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008 [J].
Ahn, Junsun ;
Lee, Jae Hwa ;
Lee, Jin ;
Kang, Ji-hoon ;
Sung, Hyung Jin .
PHYSICS OF FLUIDS, 2015, 27 (06)
[2]  
Amor C., 2020, LOG J IGPL
[3]   Intense Reynolds-stress events in turbulent ducts [J].
Atzori, Marco ;
Vinuesa, Ricardo ;
Lozano-Duran, Adrian ;
Schlatter, Philipp .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2021, 89 (89)
[4]   Turbulent plane Couette flow at moderately high Reynolds number [J].
Avsarkisov, V. ;
Hoyas, S. ;
Oberlack, M. ;
Garcia-Galache, J. P. .
JOURNAL OF FLUID MECHANICS, 2014, 751 :R1
[5]   Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes [J].
Bailey, S. C. C. ;
Hultmark, M. ;
Monty, J. P. ;
Alfredsson, P. H. ;
Chong, M. S. ;
Duncan, R. D. ;
Fransson, J. H. M. ;
Hutchins, N. ;
Marusic, I. ;
McKeon, B. J. ;
Nagib, H. M. ;
Orlu, R. ;
Segalini, A. ;
Smits, A. J. ;
Vinuesa, R. .
JOURNAL OF FLUID MECHANICS, 2013, 715 :642-670
[6]   Deep neural networks for data-driven LES closure models [J].
Beck, Andrea ;
Flad, David ;
Munz, Claus-Dieter .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
[7]   FLOW IN CURVED PIPES [J].
BERGER, SA ;
TALBOT, L ;
YAO, LS .
ANNUAL REVIEW OF FLUID MECHANICS, 1983, 15 :461-512
[8]   History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers [J].
Bobke, A. ;
Vinuesa, R. ;
Orlu, R. ;
Schlatter, P. .
JOURNAL OF FLUID MECHANICS, 2017, 820 :667-692
[9]   Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000 [J].
Boersma, Bendiks Jan .
13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): STATISTICAL ASPECTS, MODELLING AND SIMULATIONS OF TURBULENCE, 2011, 318
[10]   Coherent vortical and straining structures in the finite wall-mounted square cylinder wake [J].
Bourgeois, J. A. ;
Sattari, P. ;
Martinuzzi, R. J. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2012, 35 :130-140