Tuning the Optoelectronic Properties of Nonfullerene Electron Acceptors

被引:12
作者
Fang, Yuan [1 ]
Pandey, Ajay K. [1 ]
Lyons, Dani M. [1 ]
Shaw, Paul E. [1 ]
Watkins, Scott E. [2 ]
Burn, Paul L. [1 ]
Lo, Shih-Chun [1 ]
Meredith, Paul [1 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, Brisbane, Qld 4072, Australia
[2] CSIRO Mat Sci & Engn, Clayton, Vic 3169, Australia
基金
澳大利亚研究理事会;
关键词
energy conversion; materials science; organic electronics; thin films; solar cells; POLYMER SOLAR-CELLS; NON-FULLERENE ACCEPTORS; SMALL-MOLECULE ACCEPTOR; THIN-FILM TRANSISTORS; ORGANIC PHOTOVOLTAICS; CONJUGATED POLYMERS; RATIONAL DESIGN; HOLE-TRANSFER; PERFORMANCE; BANDGAP;
D O I
10.1002/cphc.201402568
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Broad spectral coverage over the solar spectrum is necessary for photovoltaic technologies and is a focus for organic solar cells. We report a series of small-molecule, nonfullerene electron acceptors containing the [(benzo[c][1,2,5]thiadiazol-4-yl)methylene]malononitrile unit as a high electron affinity component. The optoelectronic properties of these molecules were fine-tuned with the objective of attaining strong absorption at longer wavelengths by changing the low-ionization-potential moiety. The electron-accepting function of these materials was investigated with poly(3-n-hexylthiophene) (P3HT) as a standard electron donor. Significant photocurrent generation in the near infrared region, with an external quantum yield reaching as high as 22% at 700 nm and an onset >800 nm was achieved. The results support efficient hole transfer to P3HT taking place after light absorption by the acceptor molecules. A Channel II-dominated power conversion efficiency of up to 1.5% was, thus, achieved.
引用
收藏
页码:1295 / 1304
页数:10
相关论文
共 43 条
[1]   Design of New Electron Acceptor Materials for Organic Photovoltaics: Synthesis, Electron Transport, Photophysics, and Photovoltaic Properties of Oligothiophene-Functionalized Naphthalene Diimides [J].
Ahmed, Eilaf ;
Ren, Guoqiang ;
Kim, Felix S. ;
Hollenbeck, Emily C. ;
Jenekhe, Samson A. .
CHEMISTRY OF MATERIALS, 2011, 23 (20) :4563-4577
[2]   Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics [J].
Anthony, John E. .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :583-590
[3]   Ultrafast Hole-Transfer Dynamics in Polymer/PCBM Bulk Heterojunctions [J].
Bakulin, Artem A. ;
Hummelen, Jan C. ;
Pshenichnikov, Maxim S. ;
van Loosdrecht, Paul H. M. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (10) :1653-1660
[4]   PCDTBT: en route for low cost plastic solar cells [J].
Beaupre, Serge ;
Leclerc, Mario .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11097-11105
[5]   A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Leclerc, Mario .
ADVANCED MATERIALS, 2007, 19 (17) :2295-+
[6]   Rational design on n-type organic materials for high performance organic photovoltaics [J].
Chochos, Christos L. ;
Tagmatarchis, Nikos ;
Gregoriou, Vasilis G. .
RSC ADVANCES, 2013, 3 (20) :7160-7181
[7]  
Dimitrakopoulos CD, 2002, ADV MATER, V14, P99, DOI 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO
[8]  
2-9
[9]   Solution-Processed, Molecular Photovoltaics that Exploit Hole Transfer from Non-Fullerene, n-Type Materials [J].
Douglas, Jessica D. ;
Chen, Mark S. ;
Niskala, Jeremy R. ;
Lee, Olivia P. ;
Yiu, Alan T. ;
Young, Eric P. ;
Frechet, Jean M. J. .
ADVANCED MATERIALS, 2014, 26 (25) :4313-4319
[10]   Anthracene Based Conjugated Polymers: Correlation between π-π-Stacking Ability, Photophysical Properties, Charge Carrier Mobility, and Photovoltaic Performance [J].
Egbe, Daniel A. M. ;
Tuerk, Stefan ;
Rathgeber, Silke ;
Kuehnlenz, Florian ;
Jadhav, Rupali ;
Wild, Andreas ;
Birckner, Eckhard ;
Adam, Getachew ;
Pivrikas, Almantas ;
Cimrova, Vera ;
Knoer, Guenther ;
Sariciftci, Niyazi S. ;
Hoppe, Harald .
MACROMOLECULES, 2010, 43 (03) :1261-1269