Variational Physics Informed Neural Networks: the Role of Quadratures and Test Functions

被引:25
作者
Berrone, Stefano [1 ]
Canuto, Claudio [1 ]
Pintore, Moreno [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy
关键词
Variational Physics Informed Neural Networks; Quadrature formulas; Inf-sup condition; A priori error estimate; Convergence rates; Elliptic problems;
D O I
10.1007/s10915-022-01950-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyze how quadrature rules of different precisions and piecewise polynomial test functions of different degrees affect the convergence rate of Variational Physics Informed Neural Networks (VPINN) with respect to mesh refinement, while solving elliptic boundary-value problems. Using a Petrov-Galerkin framework relying on an inf-sup condition, we derive an a priori error estimate in the energy norm between the exact solution and a suitable high-order piecewise interpolant of a computed neural network. Numerical experiments confirm the theoretical predictions and highlight the importance of the inf-sup condition. Our results suggest, somehow counterintuitively, that for smooth solutions the best strategy to achieve a high decay rate of the error consists in choosing test functions of the lowest polynomial degree, while using quadrature formulas of suitably high precision.
引用
收藏
页数:27
相关论文
共 36 条
[1]  
[Anonymous], 1971, Abh. Math. Sem. Univ. Hamburg, DOI 10.1007/BF02995904
[2]  
[Anonymous], 1999, Numerical Optimization.
[3]  
Baydin AG, 2018, J MACH LEARN RES, V18
[4]  
Berrone S, 2022, Arxiv, DOI arXiv:2205.00786
[5]   Physics-informed neural networks for inverse problems in nano-optics and metamaterials [J].
Chen, Yuyao ;
Lu, Lu ;
Karniadakis, George Em ;
Dal Negro, Luca .
OPTICS EXPRESS, 2020, 28 (08) :11618-11633
[6]  
Chen Z, 2021, NAT COMMUN, V12, DOI [10.1038/s41467-021-26434-1, 10.1038/s41467-021-27250-3]
[7]  
Ciarlet P.G., 2002, Classics in Applied Mathematics
[8]   Physics-Informed Neural Networks for Cardiac Activation Mapping [J].
Costabal, Francisco Sahli ;
Yang, Yibo ;
Perdikaris, Paris ;
Hurtado, Daniel E. ;
Kuhl, Ellen .
FRONTIERS IN PHYSICS, 2020, 8
[9]   On the approximation of functions by tanh neural networks [J].
De Ryck, Tim ;
Lanthaler, Samuel ;
Mishra, Siddhartha .
NEURAL NETWORKS, 2021, 143 :732-750
[10]   Deep Neural Network Approximation Theory [J].
Elbrachter, Dennis ;
Perekrestenko, Dmytro ;
Grohs, Philipp ;
Boelcskei, Helmut .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (05) :2581-2623