Low-noise AlGaAsSb avalanche photodiodes for 1550 nm light detection

被引:10
作者
Collins, Xiao [1 ]
White, Benjamin [1 ]
Cao, Ye [2 ]
Osman, Tarick [2 ]
Taylor-Mew, Jonathan [2 ]
Ng, Jo Shien [2 ]
Tan, Chee Hing [2 ]
机构
[1] Phlux Technol Ltd, Innovat Ctr, 217 Portobello, Sheffield S1 4DP, S Yorkshire, England
[2] Univ Sheffield, Dept Elect & Elect Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
来源
OPTICAL COMPONENTS AND MATERIALS XIX | 2022年 / 11997卷
关键词
AlGaAsSb; avalanche photodiode; excess noise; photodetector; NIR; LIDAR; impact ionization;
D O I
10.1117/12.2608842
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The optical detector used in pulsed LIDAR, range finding and optical time domain reflectometry systems is typically the limiting factor in the system's sensitivity. It is well-known that an avalanche photodiode (APD) can be used to improve the signal to noise ratio over a PIN detector, however, APDs operating at the eye-safe wavelengths around 1550 nm are limited in sensitivity by high excess noise. The underlying issue is that the impact ionization coefficient of InAlAs and InP used as the avalanche region in current commercial APDs are very similar at high gain, leading to poor excess noise performance. Recently, we have demonstrated extremely low noise from an Al(Ga)AsSb PIN diode with highly dissimilar impact ionization coefficients due to electron dominated impact ionization. In this paper, we report on the first low noise InGaAs/AlGaAsSb separate absorption, grading and multiplication APDs operating at 1550 nm with extremely low excess noise factor of 1.93 at a gain of 10 and 2.94 at a gain of 20. Furthermore, the APD's dark current density was measured to be 74.6 mu A/cm(2) at a gain of 10 which is competitive with commercial devices. We discuss the impact of the excess noise, dark current and responsivity on the APDs sensitivity and, project a noise-equivalent power (NEP) below 80 fW/Hz(0.5) from a 230 mu m diameter APD and commercial transimpedance amplifier (TIA). The prospects for the next generation of extremely low noise APDs for 1550 nm light detection are discussed.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
Adachi S., 1992, PHYS PROPERTIES 3 5
[2]  
[Anonymous], EXCELITAS C30645 C30
[3]  
[Anonymous], LASER COMPONENTS IAG
[4]  
[Anonymous], OPTOGRATION
[5]  
[Anonymous], HAMMAMATSU G14858 00
[6]   Avalanche Photodiodes Based on the AlInAsSb Materials System [J].
Bank, Seth R. ;
Campbell, Joe C. ;
Maddox, Scott J. ;
Ren, Min ;
Rockwell, Ann-Katheryn ;
Woodson, Madison E. ;
March, Stephen D. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (02)
[7]   Recent advances in avalanche photodiodes [J].
Campbell, JC ;
Demiguel, S ;
Ma, F ;
Beck, A ;
Guo, XY ;
Wang, SL ;
Zheng, XG ;
Li, XW ;
Beck, JD ;
Kinch, MA ;
Huntington, A ;
Coldren, LA ;
Decobert, J ;
Tscherptner, N .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (04) :777-787
[8]   Avalanche multiplication in InAlAs [J].
Goh, Y. L. ;
Massey, D. J. ;
Marshall, A. R. J. ;
Ng, J. S. ;
Tan, C. H. ;
Ng, W. K. ;
Rees, G. J. ;
Hopkinson, A. ;
David, J. P. R. ;
Jones, S. K. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (01) :11-16
[9]   240-GHz Gain-Bandwidth Product Back-Side Illuminated AlInAs Avalanche Photodiodes [J].
Lahrichi, M. ;
Glastre, G. ;
Derouin, E. ;
Carpentier, D. ;
Lagay, N. ;
Decobert, J. ;
Achouche, M. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (18) :1373-1375
[10]   Low Noise Avalanche Photodiodes Incorporating a 40 nm AlAsSb Avalanche Region [J].
Tan, Chee Hing ;
Xie, Shiyu ;
Xie, Jingjing .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2012, 48 (01) :36-41