Adversarial Controls for Scientific Machine Learning

被引:45
作者
Chuang, Kangway V. [1 ,2 ]
Keiser, Michael J. [1 ,2 ]
机构
[1] Univ Calif San Francisco, Inst Neurodegenerat Dis, Dept Bioengn & Therapeut Sci, Dept Pharmaceut Chem, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Bakar Inst Computat Hlth Sci, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
关键词
D O I
10.1021/acschembio.8b00881
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
New machine learning methods to analyze raw chemical and biological data are now widely accessible as open source toolkits. This positions researchers to leverage powerful, predictive models in their own domains. We caution, however, that the application of machine learning to experimental research merits careful consideration. Machine learning algorithms readily exploit confounding variables and experimental artifacts instead of relevant patterns, leading to overoptimistic performance and poor model generalization. In parallel to the strong control experiments that remain a cornerstone of experimental research, we advance the concept of adversarial controls for scientific machine learning: the design of exacting and purposeful experiments to ensure that predictive performance arises from meaningful models.
引用
收藏
页码:2819 / 2821
页数:3
相关论文
共 19 条
  • [1] Abadi M., 2016, TENSORFLOW LARGESCAL
  • [2] Anderson Chris., 2006, Wired Magazine
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] METHOD OF MULTIPLE WORKING HYPOTHESES
    CHAMBERLIN, TC
    [J]. SCIENCE, 1965, 148 (3671) : 754 - +
  • [5] TOWARD AI RESEARCH METHODOLOGY - 3 CASE STUDIES IN EVALUATION
    COHEN, PR
    HOWE, AE
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (03): : 634 - 646
  • [6] COHEN PR, 1988, AI MAG, V9, P35
  • [7] DoshiVelez F, 2017, ARXIV160508695
  • [8] James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
  • [9] Machine learning: Trends, perspectives, and prospects
    Jordan, M. I.
    Mitchell, T. M.
    [J]. SCIENCE, 2015, 349 (6245) : 255 - 260
  • [10] Leakage in Data Mining: Formulation, Detection, and Avoidance
    Kaufman, Shachar
    Rosset, Saharon
    Perlich, Claudia
    Stitelman, Ori
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (04)