The Hochschild cohomology of a closed manifold

被引:22
作者
Felix, Y
Thomas, JC
Vigué-Poirrier, M
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[2] Univ Angers, Dept Math, F-49045 Angers, France
[3] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
来源
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 99 | 2004年 / 99卷 / 99期
关键词
D O I
10.1007/s10240-004-0021-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a closed orientable manifold of dimension d and l*(M) be the usual cochain algebra on M with coefficients in a field k. The Hochschild cohomology of M, HH* (l* (M); l* (M)) is a graded commutative and associative algebra. The augmentation map E : l* (M) -> k induces a morphism of algebras I : HH* (l* (M); l* (M)) -> HH* (l* (M); k). In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of HH*(l*(M); k), which is in general quite small. The algebra HH*(l*(M); l*(M)) is expected to be isomorphic to the loop homology constructed by Chas and Sullivan. Thus our results would be translated in terms of string homology.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 13 条
[2]  
Anick, 1989, J AM MATH SOC, V2, P417, DOI 10.1090/S0894-0347-1989-0991015-7
[3]  
Cohen RL, 2004, PROG MATH, V215, P77
[4]   A homotopy theoretic realization of string topology [J].
Cohen, RL ;
Jones, JAS .
MATHEMATISCHE ANNALEN, 2002, 324 (04) :773-798
[5]  
COHEN RL, 2003, MULTIPLICATIVE PROPE
[6]   REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS [J].
DELIGNE, P ;
GRIFFITHS, P ;
MORGAN, J ;
SULLIVAN, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :245-274
[7]   ADAMS COBAR EQUIVALENCE [J].
FELIX, Y ;
HALPERIN, S ;
THOMAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :531-549
[8]  
Felix Y., 2000, RATIONAL HOMOTOPY TH, V205
[9]  
Felix Y, 1995, Handbook of algebraic topology, P829
[10]   COHOMOLOGY STRUCTURE OF AN ASSOCIATIVE RING [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1963, 78 (02) :267-&