B-GATA transcription factors - insights into their structure, regulation, and role in plant development

被引:120
作者
Behringer, Carina [1 ]
Schwechheimer, Claus [1 ]
机构
[1] Tech Univ Munich, Dept Plant Syst Biol, D-85354 Freising Weihenstephan, Germany
关键词
GATA; HAN-domain; LLM-domain; B-GATA; HANABA TARANU; GNC; GNL; CGA1; ZINC-FINGER PROTEIN; ARABIDOPSIS-THALIANA; HANABA-TARANU; REPRODUCTIVE DEVELOPMENT; CHLOROPLAST DEVELOPMENT; MICROARRAY ANALYSIS; AUXIN RECEPTOR; FACTORS GNC; FAMILY; GENES;
D O I
10.3389/fpls.2015.00090
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine-leucine-methionine) domain or an N-terminal HAN-(HAN-ABATARANU) domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED) and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE) are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence, and flowering time downstream from several growth regulatory signals. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1), maize (TASSEL SHEATH1), and barley (THIRD OUTER GLUME) are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 and the monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Evolution of light-regulated plant promoters [J].
Argüello-Astorga, G ;
Herrera-Estrella, L .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :525-555
[2]   Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development [J].
Argyros, Rebecca D. ;
Mathews, Dennis E. ;
Chiang, Yi-Hsuan ;
Palmer, Christine M. ;
Thibault, Derek M. ;
Etheridge, Naomi ;
Argyros, D. Aaron ;
Mason, Michael G. ;
Kieber, Joseph J. ;
Schaller, G. Eric .
PLANT CELL, 2008, 20 (08) :2102-2116
[3]   Functional Diversification within the Family of B-GATA Transcription Factors through the Leucine-Leucine-Methionine Domain [J].
Behringer, Carina ;
Bastakis, Emmanouil ;
Ranftl, Quirin L. ;
Mayer, Klaus F. X. ;
Schwechheimer, Claus .
PLANT PHYSIOLOGY, 2014, 166 (01) :293-U430
[4]   Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity [J].
Bi, YM ;
Zhang, Y ;
Signorelli, T ;
Zhao, R ;
Zhu, T ;
Rothstein, S .
PLANT JOURNAL, 2005, 44 (04) :680-692
[5]   Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis [J].
Blázquez, MA ;
Weigel, D .
PLANT PHYSIOLOGY, 1999, 120 (04) :1025-1032
[6]   PAH-Domain-Specific Interactions of the Arabidopsis Transcription Coregulator SIN3-LIKE1 (SNL1) with Telomere-Binding Protein 1 and ALWAYS EARLY2 Myb-DNA Binding Factors [J].
Bowen, Adam J. ;
Gonzalez, Deyarina ;
Mullins, Jonathan G. L. ;
Bhatt, Anuj M. ;
Martinez, Alberto ;
Conlan, R. Steven .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 395 (05) :937-949
[7]   Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis [J].
Cao, DN ;
Hussain, A ;
Cheng, H ;
Peng, JR .
PLANTA, 2005, 223 (01) :105-113
[8]   The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis [J].
Causier, Barry ;
Ashworth, Mary ;
Guo, Wenjia ;
Davies, Brendan .
PLANT PHYSIOLOGY, 2012, 158 (01) :423-438
[9]   Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function [J].
Cheng, H ;
Qin, LJ ;
Lee, SC ;
Fu, XD ;
Richards, DE ;
Cao, DN ;
Luo, D ;
Harberd, NP ;
Peng, JR .
DEVELOPMENT, 2004, 131 (05) :1055-1064
[10]   Functional Characterization of the GATA Transcription Factors GNC and CGA1 Reveals Their Key Role in Chloroplast Development, Growth, and Division in Arabidopsis [J].
Chiang, Yi-Hsuan ;
Zubo, Yan O. ;
Tapken, Wiebke ;
Kim, Hyo Jung ;
Lavanway, Ann M. ;
Howard, Louisa ;
Pilon, Marinus ;
Kieber, Joseph J. ;
Schaller, G. Eric .
PLANT PHYSIOLOGY, 2012, 160 (01) :332-348