UNLIKELY INTERSECTIONS OVER FINITE FIELDS: POLYNOMIAL ORBITS IN SMALL SUBGROUPS

被引:0
作者
Merai, Laszlo [1 ]
Shparlinski, Igor E. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenberger Str 69, A-4040 Linz, Austria
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
Polynomial iterations; polynomials semigroups; multiplicative subgroup; finite fields; unlikely intersection; MORDELL-LANG CONJECTURE; RATIONAL FUNCTIONS; MAPS; SUMS;
D O I
10.3934/dcds.2020070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the frequency of polynomial iterations which fall in a given multiplicative subgroup of a finite field of p elements. We also give a lower bound on the size of the subgroup which is multiplicatively generated by the first N elements in an orbit. We derive these from more general results about sequences of compositions on a fixed set of polynomials.
引用
收藏
页码:1065 / 1073
页数:9
相关论文
共 28 条
[1]   A case of the dynamical Mordell-Lang conjecture [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Kurlberg, Par ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2012, 352 (01) :1-26
[2]  
Berczes A., INTERN MATH RES NOTI
[3]   Powers in Orbits of Rational Functions: Cases of an Arithmetic Dynamical Mordell-Lang Conjecture [J].
Cahn, Jordan ;
Jones, Rafe ;
Spear, Jacob .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (04) :773-817
[4]  
Chang MC, 2014, P AM MATH SOC, V142, P85
[5]   Polynomial iteration in characteristic p [J].
Chang, Mei-Chu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (11) :3412-3421
[6]   AVOIDING ALGEBRAIC INTEGERS OF BOUNDED HOUSE IN ORBITS OF RATIONAL FUNCTIONS OVER CYCLOTOMIC CLOSURES [J].
Chen, Evan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (10) :4189-4198
[7]   On the concentration of points of polynomial maps and applications [J].
Cilleruelo, Javier ;
Garaev, Moubariz Z. ;
Ostafe, Alina ;
Shparlinski, Igor E. .
MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) :825-837
[8]   Cyclotomic diophantine problems (hilbert irreducibility and invariant sets for polynomial maps) [J].
Dvornicich, R. ;
Zannier, U. .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (03) :527-554
[9]   Intersections of polynomial orbits, and a dynamical Mordell-Lang conjecture [J].
Ghioca, Dragos ;
Tucker, Thomas J. ;
Zieve, Michael E. .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :463-483
[10]   LINEAR RELATIONS BETWEEN POLYNOMIAL ORBITS [J].
Ghioca, Dragos ;
Tucker, Thomas J. ;
Zieve, Michael E. .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (07) :1379-1410