UNLIKELY INTERSECTIONS OVER FINITE FIELDS: POLYNOMIAL ORBITS IN SMALL SUBGROUPS

被引:0
作者
Merai, Laszlo [1 ]
Shparlinski, Igor E. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenberger Str 69, A-4040 Linz, Austria
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
Polynomial iterations; polynomials semigroups; multiplicative subgroup; finite fields; unlikely intersection; MORDELL-LANG CONJECTURE; RATIONAL FUNCTIONS; MAPS; SUMS;
D O I
10.3934/dcds.2020070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the frequency of polynomial iterations which fall in a given multiplicative subgroup of a finite field of p elements. We also give a lower bound on the size of the subgroup which is multiplicatively generated by the first N elements in an orbit. We derive these from more general results about sequences of compositions on a fixed set of polynomials.
引用
收藏
页码:1065 / 1073
页数:9
相关论文
共 28 条
  • [1] [Anonymous], 1984, LONDON MATH SOC LECT
  • [2] A case of the dynamical Mordell-Lang conjecture
    Benedetto, Robert L.
    Ghioca, Dragos
    Kurlberg, Par
    Tucker, Thomas J.
    [J]. MATHEMATISCHE ANNALEN, 2012, 352 (01) : 1 - 26
  • [3] Berczes A., INTERN MATH RES NOTI
  • [4] Powers in Orbits of Rational Functions: Cases of an Arithmetic Dynamical Mordell-Lang Conjecture
    Cahn, Jordan
    Jones, Rafe
    Spear, Jacob
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (04): : 773 - 817
  • [5] Chang MC, 2014, P AM MATH SOC, V142, P85
  • [6] Polynomial iteration in characteristic p
    Chang, Mei-Chu
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (11) : 3412 - 3421
  • [7] AVOIDING ALGEBRAIC INTEGERS OF BOUNDED HOUSE IN ORBITS OF RATIONAL FUNCTIONS OVER CYCLOTOMIC CLOSURES
    Chen, Evan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (10) : 4189 - 4198
  • [8] On the concentration of points of polynomial maps and applications
    Cilleruelo, Javier
    Garaev, Moubariz Z.
    Ostafe, Alina
    Shparlinski, Igor E.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 825 - 837
  • [9] Cyclotomic diophantine problems (hilbert irreducibility and invariant sets for polynomial maps)
    Dvornicich, R.
    Zannier, U.
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 139 (03) : 527 - 554
  • [10] Intersections of polynomial orbits, and a dynamical Mordell-Lang conjecture
    Ghioca, Dragos
    Tucker, Thomas J.
    Zieve, Michael E.
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 463 - 483