Transcendence of zeros of Jacobi forms

被引:0
作者
Choie, YoungJu [1 ]
Kohnen, Winfried [2 ]
机构
[1] Pohang Inst Sci & Technol, Dept Math, POSTECH, Pohang 790784, South Korea
[2] Heidelberg Univ, Mathemat Inst, INF 288, D-69120 Heidelberg, Germany
关键词
Jacobi forms; Zeros; Transcendency; DIVISORS; VALUES;
D O I
10.1007/s11139-016-9797-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A special case of a fundamental theorem of Schneider asserts that if is algebraic (where j is the classical modular invariant), then any zero z not in of the Weierstrass function attached to the lattice is transcendental. In this note we generalize this result to holomorphic Jacobi forms of weight k and index with algebraic Fourier coefficients.
引用
收藏
页码:319 / 322
页数:4
相关论文
共 7 条
[1]  
BERNDT R, 1981, J REINE ANGEW MATH, V326, P79
[2]   The arithmetic of the values of modular functions and the divisors of modular forms [J].
Bruinier, JH ;
Kohnen, W ;
Ono, K .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :552-566
[3]   Special values of elliptic functions at points of the divisors of Jacobi forms [J].
Choie, YJ ;
Kohnen, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) :3309-3317
[4]  
Duke W, 2008, MATH ANN, V340, P897, DOI 10.1007/s00208-007-0174-3
[5]  
Eichler M., 1985, The theory of Jacobi forms, V55
[6]   ALGEBRAIC INDEPENDENCE OF VALUES OF MODULAR FORMS [J].
Gun, Sanoli ;
Murty, M. Ram ;
Rath, Purusottam .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (04) :1065-1074
[7]   Arithmetic examinations of elliptic integrals. [J].
Schneider, T .
MATHEMATISCHE ANNALEN, 1937, 113 :1-13