Different sympathetic pathways control the metabolism of distinct bone envelopes
被引:42
作者:
Bataille, Caroline
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
AP HP, Paris, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Bataille, Caroline
[1
,4
]
Mauprivez, Cedric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
AP HP, Paris, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Mauprivez, Cedric
[1
,4
]
论文数: 引用数:
h-index:
机构:
Hay, Eric
[2
,3
]
Baroukh, Brigitte
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Baroukh, Brigitte
[1
]
Brun, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Brun, Adrian
[1
]
Chaussain, Catherine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
AP HP, Paris, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Chaussain, Catherine
[1
,4
]
Marie, Pierre J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Hop Lariboisiere, F-75475 Paris 10, France
INSERM, UMR606, F-75475 Paris 10, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Marie, Pierre J.
[2
,3
]
Saffar, Jean-Louis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
AP HP, Paris, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Saffar, Jean-Louis
[1
,4
]
Cherruau, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
AP HP, Paris, FranceUniv Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
Cherruau, Marc
[1
,4
]
机构:
[1] Univ Paris 05, Fac Chirurg Dent, Lab Pathol & Biotherapies Organe Dent, EA2496, F-92120 Montrouge, France
[2] Univ Paris 05, Hop Lariboisiere, F-75475 Paris 10, France
Bone remodeling, the mechanism that modulates bone mass adaptation, is controlled by the sympathetic nervous system through the catecholaminergic pathway. However, resorption in the mandible periosteum envelope is associated with cholinergic Vasoactive Intestinal Peptide (VIP)-positive nerve fibers sensitive to sympathetic neurotoxics, suggesting that different sympathetic pathways may control distinct bone envelopes. In this study, we assessed the role of distinct sympathetic pathways on rat femur and mandible envelopes. To this goal, adult male Wistar rats were chemically sympathectomized or treated with agonists/antagonists of the catecholaminergic and cholinergic pathways; femora and mandibles were sampled. Histomorphometric analysis showed that sympathectomy decreased the number of preosteoclasts and RANKL-expressing osteoblasts in mandible periosteum but had no effect on femur trabecular bone. In contrast, pharmacological stimulation or repression of the catecholaminergic cell receptors impacted the femur trabecular bone and mandible endosteal retromolar zone. VIP treatment of sympathectomized rats rescued the disturbances of the mandible periosteum and alveolar wall whereas the cholinergic pathway had no effect on the catecholaminergic-dependent envelopes. We also found that VIP receptor-1 was weakly expressed in periosteal osteoblasts in the mandible and was increased by VIP treatment, whereas osteoblasts of the retromolar envelope that was innervated only by tyrosine hydroxylase-immunoreactive fibers, constitutively expressed beta-2 adrenergic receptors. These data highlight the complexity of the sympathetic control of bone metabolism. Both the embryological origin of the bone (endochondral for the femur, membranous for the mandibular periosteum and the socket wall) and environmental factors specific to the innervated envelope may influence the phenotype of the sympathetic innervation. We suggest that an origin-dependent imprint of bone cells through osteoblast-nerve interactions determines the type of autonomous system innervating a particular bone envelope. (C) 2012 Elsevier Inc. All rights reserved.