Moments, moderate and large deviations for a branching process in a random environment

被引:42
作者
Huang, Chunmao
Liu, Quansheng [1 ]
机构
[1] Univ Bretagne Sud, LMAM, F-56017 Vannes, France
基金
中国国家自然科学基金;
关键词
Branching process; Random environment; Moments; Harmonic moments; Large deviation; Moderate deviation; Central limit theorem; ASYMPTOTIC PROPERTIES; LIMIT-THEOREMS;
D O I
10.1016/j.spa.2011.09.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (Z(n)) be a supercritical branching process in a random environment and W be the limit of the normalized population size Z(n)/E[Z(n)vertical bar xi]. We show large and moderate deviation principles for the sequence log Z(n) (with appropriate normalization). For the proof, we calculate the critical value for the existence of harmonic moments of W, and show an equivalence for all the moments of Z(n). Central limit theorems on W - W-n and log Z(n) are also established. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:522 / 545
页数:24
相关论文
共 26 条
[1]   Functional limit theorems for strongly subcritical branching processes in random environment [J].
Afanasyev, VI ;
Geiger, J ;
Kersting, G ;
Vatutin, VA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (10) :1658-1676
[2]   Criticality for branching processes in random environment [J].
Afanasyev, VI ;
Geiger, J ;
Kersting, G ;
Vatutin, VA .
ANNALS OF PROBABILITY, 2005, 33 (02) :645-673
[3]  
[Anonymous], 2010, MARKOV P REL FIELDS
[4]  
[Anonymous], 1972, BRANCHING PROCESSES
[5]   BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS .1. EXTINCTION PROBABILITIES [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1499-+
[6]   BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS, II - LIMIT THEOREMS [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1843-+
[7]  
Bansaye V., 2010, UPPER LARGE DEVIATIO
[8]  
Bansaye V., 2009, MARKOV PROCESS RELAT, V15, P493
[9]   Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails [J].
Boeinghoff, Christian ;
Kersting, Goetz .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (10) :2064-2077
[10]  
Dembo A., 1998, LARGE DEVIATIONS TEC