Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings

被引:51
|
作者
Deng, Shuxiang [1 ,2 ]
He, Gang [1 ]
Yang, Zengchao [1 ]
Wang, Jingxia [3 ]
Li, Jiangtao [1 ]
Jiang, Lei [3 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Cryogen, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Bioinspired Mat & Interface Sci, Beijing 100190, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2022年 / 107卷
关键词
High-entropy ceramic; Pyrochlore structure; Thermal barrier coating material; CMAS resistance; HIGH-TEMPERATURE ATTACK; RARE-EARTH-ZIRCONATE; VOLCANIC ASH; CONDUCTIVITY; CORROSION; RELEVANT; GROWTH;
D O I
10.1016/j.jmst.2021.07.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel high-entropy material, (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)(2)Zr2O7 was successfully synthesized by the solid state reaction method and spark plasma sintering, and investigated as a promising thermal barrier coating material. Rare-earth elements were distributed homogeneously in the pyrochlore structure. It was found that the prepared high-entropy ceramic maintains pyrochlore structure at the temperature up to 1600 degrees C, and it possesses a similar thermal expansion coefficient (10.2 x 10(-6) K-1 at 25-900 degrees C) to that of YSZ, low thermal conductivity (< 0.9 W m(-1) K-1 at 100-1000 degrees C) and good CMAS resistance (infiltration depth is 22 mu m after annealed at 1300 degrees C for 24 h). The corrosion process was investigated, and RE elements distributing homogeneously in (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)(2)Zr2O7 show different diffusion rates in CMAS. RE3+ with a larger radius (closer to Ca2+) is easier to react with CMAS to form an apatite phase. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [1] Calcium-magnesium-alumina-silicate(CMAS) resistant high entropy ceramic(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings
    Shuxiang Deng
    Gang He
    Zengchao Yang
    Jingxia Wang
    Jiangtao Li
    Lei Jiang
    Journal of Materials Science & Technology, 2022, 107 (12) : 259 - 265
  • [2] Pressureless Sintering of(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance
    Fan, Wenkai
    Yang, Xiao
    Li, Honghua
    Li, Yong
    Li, Jiangtao
    JOURNAL OF INORGANIC MATERIALS, 2025, 40 (02) : 159 - 167
  • [3] A novel (Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 high-entropy ceramic with excellent CMAS corrosion resistance for thermal barrier coatings
    Yang, Lingxu
    Xie, Fangkun
    Geng, Haojun
    Wu, Liankui
    Liu, Huijun
    Zeng, Chaoliu
    CORROSION SCIENCE, 2025, 250
  • [4] CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials
    Lin, Guangqiang
    Wang, Yanli
    Yang, Lingxu
    Sun, Rongfa
    Wu, Liankui
    Zhang, Xiaofeng
    Liu, Huijun
    Zeng, Chaoliu
    CORROSION SCIENCE, 2023, 224
  • [5] Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics
    Yan, Rongxue
    Liang, Wenping
    Miao, Qiang
    Zhao, Hui
    Liu, Ruixiang
    Li, Jingli
    Zang, Kai
    Dong, Meijing
    He, Xiping
    Gao, Xiguang
    Song, Yindong
    CERAMICS INTERNATIONAL, 2023, 49 (12) : 20729 - 20741
  • [6] 无压烧结制备(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷及其高温抗CMAS腐蚀性能
    樊文楷
    杨潇
    李宏华
    李永
    李江涛
    无机材料学报, 2025, 40 (02) : 159 - 167
  • [7] High-entropy (La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic: A novel dual-phase high-entropy ceramic
    Li, Zhefeng
    Bai, Yu
    Hao, Jiajing
    Dong, Hongying
    Yang, Ting
    Gao, Yuanming
    Ma, Wen
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (10)
  • [8] High-entropy(Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material
    Longkang Cong
    Wei Li
    Jiancheng Wang
    Shengyue Gu
    Shouyang Zhang
    JournalofMaterialsScience&Technology, 2022, 101 (06) : 199 - 204
  • [9] (Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 and (Sc0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 high-entropy rare-earth disilicates as promising materials for environmental barrier coatings
    Luo, Zhongwei
    Jiang, Jianing
    Dong, Shujuan
    Zhou, Changling
    Lue, Kaiyue
    Xie, Yifeng
    Duan, Zhixing
    Huang, Yan
    Chen, Tingyang
    Deng, Longhui
    Cao, Xueqiang
    CERAMICS INTERNATIONAL, 2024, 50 (13) : 23342 - 23355
  • [10] Corrosion mechanisms of high-entropy rare earth zirconate (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 exposed to CMAS and multi-medium (NaVO3+CMAS)
    Yan, Rongxue
    Liang, Wenping
    Miao, Qiang
    Zhao, Hui
    Liu, Ruixiang
    Dong, Meijing
    Zang, Kai
    Jia, Feilong
    Chang, Xiangle
    He, Xiping
    Gao, Xiguang
    Song, Yindong
    Tao, Xiaoma
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (05) : 3277 - 3295