Strength and Failure Behaviour of Spark Plasma Sintered Steel-Zirconia Composites Under Compressive Loading

被引:20
|
作者
Krueger, L. [1 ]
Decker, S. [1 ]
Ohser-Wiedemann, R. [2 ]
Ehinger, D. [1 ]
Martin, S. [2 ]
Martin, U. [2 ]
Seifert, H. J. [2 ]
机构
[1] TU Bergakad Freiberg, Inst Mat Engn, D-09599 Freiberg, Germany
[2] TU Bergakad Freiberg, Inst Mat Sci, D-09599 Freiberg, Germany
关键词
TRIP-steel; metal-matrix composite; spark plasma sintering; strain rate dependence; FUNCTIONALLY GRADED MATERIALS; MECHANICAL-PROPERTIES; INDUCED MARTENSITE; STAINLESS-STEEL; DEFORMATION;
D O I
10.1002/srin.201100082
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Several composites, consisting of a metastable austenitic steel matrix and varying amounts of MgO partially stabilized zirconia particles (Mg-PSZ), were produced through spark plasma sintering (SPS). Compression tests were carried out at room temperature in a wide range of strain rate (4.10(-4) s(-1), 2.10(-3) s(-1), 10(-1) s(-1), 1s(-1), 10(2) s(-1)). In conjunction with subsequent microstructural investigations, the mechanical material behaviour was clarified. All composites showed a good ductility and a high strength. The strength increased with an increase of the ceramic content and with higher strain rates. Both, the martensitic transformation of the steel matrix and of the ceramic particles, could be proved at all strain rates. In this study no significant influence of the strain rate on the amount of transformed ceramic could be detected while the steel matrix showed less alpha'-martensite after compression at rising strain rates. Local material failure occurred around 0.3 true compressive strain depending on the applied strain rate and the amount of the Mg-PSZ powder. The main reason for the damage is the relatively weak ceramic-ceramic interface within the ceramic clusters.
引用
收藏
页码:1017 / 1021
页数:5
相关论文
共 50 条
  • [1] Compressive deformation behaviour and toughening mechanisms of spark plasma sintered NiAl-CNT composites
    Awotunde, Mary A.
    Olubambi, Peter A.
    Chen, Daolun
    CERAMICS INTERNATIONAL, 2022, 48 (11) : 16072 - 16084
  • [2] Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites
    Miao, XG
    Chen, YM
    Guo, HB
    Khor, KA
    CERAMICS INTERNATIONAL, 2004, 30 (07) : 1793 - 1796
  • [3] Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites
    Dusza, Jan
    Blugan, Gurdial
    Morgiel, Jerzy
    Kuebler, Jakob
    Inam, Fawad
    Peijs, Ton
    Reece, Michael J.
    Puchy, Viktor
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (15) : 3177 - 3184
  • [4] SPARK PLASMA SINTERED ALUMINA ZIRCONIA NANO COMPOSITES BY ADDITION OF HYDROXYAPATITE
    Li, S. F.
    Izui, H.
    Okano, M.
    Zhang, W. H.
    Watanabe, T.
    PROCESSING AND PROPERTIES OF ADVANCED CERAMICS AND COMPOSITES, 2009, 203 : 93 - 106
  • [5] Wear mechanism of spark plasma sintered MWCNTs reinforced zirconia composites under dry sliding conditions
    Lamnini, Soukaina
    Balazsi, Csaba
    Balazsi, Katalin
    WEAR, 2019, 430 : 280 - 289
  • [6] Spark Plasma Sintered Zirconia Ceramic Composites with Graphene-Based Nanostructures
    Gallardo-Lopez, Angela
    Lopez-Pernia, Cristina
    Munoz-Ferreiro, Carmen
    Gonzalez-Orellana, Carmen
    Morales-Rodriguez, Ana
    Poyato, Rosalia
    CERAMICS-SWITZERLAND, 2018, 1 (01): : 153 - 164
  • [7] Failure mechanisms in thick composites under compressive loading
    Daniel, IM
    Hsiao, HM
    Wooh, SC
    COMPOSITES PART B-ENGINEERING, 1996, 27 (06) : 543 - 552
  • [8] Failure mechanisms in thick composites under compressive loading
    Northwestern Univ, Evanston, United States
    Compos Part B:Eng, 6 (543-552):
  • [9] Compressive Creep Behavior of Spark Plasma Sintered 8 mol% Yttria Stabilized Cubic Zirconia
    Arellano, K. D. Robles
    Bichler, L.
    Mondal, K.
    Fong, R.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (10) : 3680 - 3684
  • [10] Compressive Creep Behavior of Spark Plasma Sintered 8 mol% Yttria Stabilized Cubic Zirconia
    K. D. Robles Arellano
    L. Bichler
    K. Mondal
    R. Fong
    Journal of Materials Engineering and Performance, 2014, 23 : 3680 - 3684