Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads

被引:142
作者
Sheikhi, Amir [1 ,2 ,3 ]
de Rutte, Joseph [1 ]
Haghniaz, Reihaneh [1 ,2 ,3 ]
Akouissi, Outman [1 ,2 ,3 ]
Sohrabi, Alireza [1 ]
Di Carlo, Dino [1 ,3 ,4 ]
Khademhosseini, Ali [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, 410 Westwood Plaza, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, C MIT, 570 Westwood Plaza, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, 570 Westwood Plaza, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, 10833 Le Conte Ave, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Chem & Biomol Engn, 5531 Boelter Hall, Los Angeles, CA 90095 USA
[7] Konkuk Univ, Dept Bioind Technol, Coll Anim Biosci & Technol, Seoul 143701, South Korea
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Gelatin methacryloyl (GelMA); Modular hydrogels; Microporous scaffolds; Microbeads; 3D cell seeding; Particle gels; MICROENGINEERED HYDROGELS; TISSUE; SCAFFOLDS; MEDICINE; DESIGN;
D O I
10.1016/j.biomaterials.2018.10.040
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Naturally-derived proteins, such as collagen, elastin, fibroin, and gelatin (denatured collagen) hold a remarkable promise for tissue engineering and regenerative medicine. Gelatin methacryloyl (GelMA), synthesized from the methacryloyl modification of gelatin, mimicking the structure of extracellular matrix, has widely been used as a universal multi-responsive scaffold for a broad spectrum of applications, spanning from cell therapy to bioprinting and organoid development. Despite the widespread applications of GelMA, coupled stiffness and porosity has inhibited its applications in 3D cellular engineering wherein a stiff scaffold with large pores is demanded (e.g., at concentrations > 10 wt%). Taking advantage of the orthogonal thermo-chemical responsivity of GelMA, we have developed microfluidic-assisted annealable GelMA beads, that are first stabilized by temperature-mediated physical crosslinking, flowed to form a scaffold structure, and then chemically annealed using light to fabricate novel bead-based 3D GelMA scaffolds with high mechanical resilience. We show how beaded GelMA (B-GelMA) provides a self-standing microporous environment with an orthogonal void fraction and stiffness, promoting cell adhesion, proliferation, and rapid 3D seeding at a high polymer concentration (similar to 20 wt %) that would otherwise be impossible for bulk GelMA. B-GelMA, decorated with methacryloyl and arginylglycylaspartic acid (RGD) peptide motifs, does not require additional functionalization for annealing and cell adhesion, providing a versatile biorthogonal platform with orthogonal stiffness and porosity for a myriad of biomedical applications. This technology provides a universal method to convert polymeric materials with orthogonal physico-chemical responsivity to modular platforms, opening a new horizon for converting bulk hydrogels to beaded hydrogels (B-hydrogels) with decoupled porosity and stiffness.
引用
收藏
页码:560 / 568
页数:9
相关论文
共 44 条
[1]   Smart scaffolds in tissue regeneration [J].
Ahadian, Samad ;
Khademhosseini, Ali .
REGENERATIVE BIOMATERIALS, 2018, 5 (03) :125-128
[2]  
Annabi N, 2010, TISSUE ENG PART B-RE, V16, P371, DOI [10.1089/ten.teb.2009.0639, 10.1089/ten.TEB.2009.0639]
[3]   Directed 3D cell alignment and elongation in microengineered hydrogels [J].
Aubin, Hug ;
Nichol, Jason W. ;
Hutson, Che B. ;
Bae, Hojae ;
Sieminski, Alisha L. ;
Cropek, Donald M. ;
Akhyari, Payam ;
Khademhosseini, Ali .
BIOMATERIALS, 2010, 31 (27) :6941-6951
[4]   Degradation of partially oxidized alginate and its potential application for tissue engineering [J].
Bouhadir, KH ;
Lee, KY ;
Alsberg, E ;
Damm, KL ;
Anderson, KW ;
Mooney, DJ .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :945-950
[5]   Spatiotemporal hydrogel biomaterials for regenerative medicine [J].
Brown, Tobin E. ;
Anseth, Kristi S. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (21) :6532-6552
[6]   Biomedical applications of hydrogels: A review of patents and commercial products [J].
Calo, Enrica ;
Khutoryanskiy, Vitaliy V. .
EUROPEAN POLYMER JOURNAL, 2015, 65 :252-267
[7]   Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue [J].
Chen, Qi-Zhi ;
Bismarck, Alexander ;
Hansen, Ulrich ;
Junaid, Sarah ;
Tran, Michael Q. ;
Harding, Sian E. ;
Ali, Nadire N. ;
Boccaccini, Aldo R. .
BIOMATERIALS, 2008, 29 (01) :47-57
[8]   Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering [J].
Chung, Bong Geun ;
Lee, Kwang-Ho ;
Khademhosseini, Ali ;
Lee, Sang-Hoon .
LAB ON A CHIP, 2012, 12 (01) :45-59
[9]   The evolution of 'sol-gel' chemistry as a technique for materials synthesis [J].
Danks, A. E. ;
Hall, S. R. ;
Schnepp, Z. .
MATERIALS HORIZONS, 2016, 3 (02) :91-112
[10]  
de Gennes P.G., 1979, SCALING CONCEPTS POL