A BLIND SIGNATURE BASED ON DISCRETE LOGARITHM PROBLEM

被引:0
作者
Shen, Victor R. L. [1 ]
Chung, Yu Fang [3 ]
Chen, Tzer Shyong [4 ]
Lin, Yu An [2 ]
机构
[1] Natl Taipei Univ, Dept Comp Sci & Informat Engn, New Taipei City 23741, Taiwan
[2] Natl Taipei Univ, Grad Inst Elect Engn, New Taipei City 23741, Taiwan
[3] Tunghai Univ, Dept Elect Engn, Taichung 40704, Taiwan
[4] Tunghai Univ, Dept Informat Management, Taichung 40704, Taiwan
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2011年 / 7卷 / 09期
关键词
Blind signature; Digital signature; Discrete logarithm problem; SCHEME; EFFICIENT; CRYPTANALYSIS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The concept of a blind signature scheme deals with the request that the signer should sign on a blind message. The characteristic of blind signatures is that the requester enables to derive the signature but the signer disables to link a pair of signatures when the requester releases the signature pair in public. This study proposes a new blind signature scheme based on the discrete logarithm problem and the generalized ElGamal-type digital signature scheme by Hare. With high security, the proposed blind signature scheme meets the requirements like correctness, blindness, unforgeability and untraceability.
引用
收藏
页码:5403 / 5416
页数:14
相关论文
共 50 条
[21]   Improvement of digital signature variants based on elliptic curve with message recovery and its discrete logarithm problem [J].
Shao, ZH .
COMPUTER STANDARDS & INTERFACES, 2004, 27 (01) :61-69
[22]   FAIL-STOP DESIGNATED RECIPIENT SIGNATURE SCHEME BASED ON ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM [J].
Tahat, Nedal .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, (31) :205-218
[23]   Untraceable partially blind signature based on DLOG problem [J].
Huang Zheng ;
Chen Ke-fei ;
Kou Wei-dong .
Journal of Zhejiang University-SCIENCE A, 2004, 5 (1) :40-44
[24]   Security of a sessional blind signature based on quantum cryptograph [J].
Wang, Tian-Yin ;
Cai, Xiao-Qiu ;
Zhang, Rui-Ling .
QUANTUM INFORMATION PROCESSING, 2014, 13 (08) :1677-1685
[25]   An efficient self-certified multi-proxy signature scheme based on elliptic curve discrete logarithm problem [J].
Tahat, Nedal ;
Alomari, A. K. ;
Al-Hazaimeh, Obaida M. ;
Al-Jamal, Mohammad F. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (04) :935-948
[26]   A new proxy signature scheme with a semi-trusted third party based on Elliptic Curve Discrete Logarithm Problem [J].
Tahat, N. (nedal@hu.edu.jo), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (08) :207-211
[27]   ON GENERIC COMPLEXITY OF THE DISCRETE LOGARITHM PROBLEM [J].
Rybalov, A. N. .
PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2016, 33 (03) :93-97
[28]   New Blind Signature Protocols Based on a New Hard Problem [J].
Hieu, Minh ;
Nam, Hai ;
Nikolay, Moldovyan ;
Tien, Giang .
INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2017, 14 (03) :307-313
[29]   On the discrete logarithm problem in elliptic curves [J].
Diem, Claus .
COMPOSITIO MATHEMATICA, 2011, 147 (01) :75-104
[30]   Split logarithm problem and a candidate for a post-quantum signature scheme [J].
Moldovyan, A. A. ;
Moldovyan, N. A. .
COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (02) :243-258