Collaborative Filtering with Preferences Inferred from Brain Signals

被引:11
作者
Davis, Keith M., III [1 ]
Spape, Michiel [1 ]
Ruotsalo, Tuukka [1 ,2 ]
机构
[1] Univ Helsinki, Helsinki, Finland
[2] Univ Copenhagen, Copenhagen, Denmark
来源
PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021) | 2021年
基金
芬兰科学院;
关键词
Brain-computer interface; collaborative filtering; brain signals; eeg; INFORMATION; EEG; CLASSIFICATION; RELEVANCE; RECOMMENDATION; DIAGNOSIS; IMPLICIT; SYSTEM;
D O I
10.1145/3442381.3450031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collaborative filtering is a common technique in which interaction data from a large number of users are used to recommend items to an individual that the individual may prefer but has not interacted with. Previous approaches have achieved this using a variety of behavioral signals, from dwell time and clickthrough rates to self-reported ratings. However, such signals are mere estimations of the real underlying preferences of the users. Here, we use brain-computer interfacing to infer preferences directly from the human brain. We then utilize these preferences in a collaborative filtering setting and report results from an experiment where brain inferred preferences are used in a neural collaborative filtering framework. Our results demonstrate, for the first time, that brain-computer interfacing can provide a viable alternative for behavioral and self-reported preferences in realistic recommendation scenarios. We also discuss the broader implications of our findings for personalization systems and user privacy.
引用
收藏
页码:602 / 611
页数:10
相关论文
共 70 条
[1]  
Amatriain X, 2009, LECT NOTES COMPUT SC, V5535, P247, DOI 10.1007/978-3-642-02247-0_24
[2]  
[Anonymous], 2007, Proceedings of the 24th International Conference on Machine Learning
[3]  
Arapakis I., 2008, Proceedings of the 31st International ACM SIGIR Conference on Research and Development in Information Retrieval, P395, DOI [DOI 10.1145/1390334.1390403, 10.1145/1390334, DOI 10.1145/1390334]
[4]  
Arapakis I., 2009, P ACM INT C IM VID R, P216, DOI 10.1145/1646396.1646433
[5]   Emotion Based Music Recommendation System Using Wearable Physiological Sensors [J].
Ayata, Deger ;
Yaslan, Yusuf ;
Kamasak, Mustafa E. .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2018, 64 (02) :196-203
[6]   Extracting relevance and affect information from physiological text annotation [J].
Barral, Oswald ;
Kosunen, Ilkka ;
Ruotsalo, Tuukka ;
Spape, Michiel M. ;
Eugster, Manuel J. A. ;
Ravaja, Niklas ;
Kaski, Samuel ;
Jacucci, Giulio .
USER MODELING AND USER-ADAPTED INTERACTION, 2016, 26 (05) :493-520
[7]  
Bennett J., 2007, P KDD CUP WORKSH NEW, V2007, P35
[8]   Single-trial analysis and classification of ERP components - A tutorial [J].
Blankertz, Benjamin ;
Lemm, Steven ;
Treder, Matthias ;
Haufe, Stefan ;
Mueller, Klaus-Robert .
NEUROIMAGE, 2011, 56 (02) :814-825
[9]   Moving magnetoencephalography towards real-world applications with a wearable system [J].
Boto, Elena ;
Holmes, Niall ;
Leggett, James ;
Roberts, Gillian ;
Shah, Vishal ;
Meyer, Sofie S. ;
Munoz, Leonardo Duque ;
Mullinger, Karen J. ;
Tierney, Tim M. ;
Bestmann, Sven ;
Barnes, Gareth R. ;
Bowtell, Richard ;
Brookes, Matthew J. .
NATURE, 2018, 555 (7698) :657-+
[10]   THE EEG IN EARLY DIAGNOSIS OF THE ANGELMAN (HAPPY PUPPET) SYNDROME [J].
BOYD, SG ;
HARDEN, A ;
PATTON, MA .
EUROPEAN JOURNAL OF PEDIATRICS, 1988, 147 (05) :508-513