Herz spaces and summability of Fourier transforms

被引:55
作者
Feichtinger, Hans G. [2 ]
Weisz, Ferenc [1 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
[2] Univ Vienna, Fac Math, Numer Harmon Anal Grp, A-1090 Vienna, Austria
关键词
Herz spaces; weighted L-p spaces; weighted Wiener amalgam spaces; Hardy-Littlewood maximal function; theta-summability of Fourier series; Lebesgue points;
D O I
10.1002/mana.200510604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general summability method is considered for functions from Herz spaces K-p,r(alpha) (R-d). The boundedness of the Hardy-Littlewood maximal operator on Herz spaces is proved in some critical cases. This implies that the maximal operator of the theta-means sigma(theta)(T) f is also bounded on the corresponding Herz spaces and sigma(0)(T) f -> f a.e. for all f is an element of K-p,infinity(-d/p) (R-d). Moreover, sigma(theta)(T) f(x) converges to f(x) at each p-Lebesgue point of f is an element of K-p,infinity(-d/p) (R-d) if and only if the Fourier transform of theta is in the Herz space K-p',1(d/p) (R-d). Norm convergence of the theta-means is also investigated in Herz spaces. As special cases some results are obtained for weighted L-p spaces. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:309 / 324
页数:16
相关论文
共 32 条
[1]  
[Anonymous], 2002, TRIGONOMETRIC SERIES
[2]  
BAERNSTEINII A, 1985, MEMOIRS AM MATH SOC, V318
[3]   Approximate identification in Laguerre and Kautz bases [J].
Bokor, J ;
Schipp, F .
AUTOMATICA, 1998, 34 (04) :463-468
[4]  
Butzer Paul L., 1971, Fourier Analysis and Approximation: One Dimensional Theory
[5]  
FEICHTINGER H., 1987, S MATH, VXXIX, P267
[6]  
Feichtinger HG, 2006, MONATSH MATH, V148, P333, DOI 10.1007/s00605-005-0358-4
[7]   Wiener amalgams and pointwise summability of Fourier transforms and Fourier series [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :509-536
[8]  
FLETT TM, 1974, P LOND MATH SOC, V29, P538
[9]  
GARCIACUERVA J, 1994, P LOND MATH SOC, V69, P605
[10]  
GARCIACUERVA J, 1989, J LOND MATH SOC, V39, P499