Height of minor faces in plane normal maps

被引:7
作者
Borodin, OV [1 ]
Loparev, DV
机构
[1] Russian Acad Sci, Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
graph; plane graph; structure; weight;
D O I
10.1016/S0166-218X(02)00292-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The height of a face in a plane graph is the greatest degree of a vertex incident with this face. Under appropriate necessary conditions we prove that any plane normal map has a 3-face of height at most 20, or a 4-face of height at most 11, or else a 5-face of height at most 5. The bounds 20 and 5 are shown to be the best possible. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 9 条
  • [1] Avgustinovich S.V., 1995, DISKRETN ANAL ISSLED, V2, P3
  • [2] Borodin O.V., 1992, MAT ZAMETKI, V51, P16
  • [3] Triangulated 3-polytopes without faces of low weight
    Borodin, OV
    [J]. DISCRETE MATHEMATICS, 1998, 186 (1-3) : 281 - 285
  • [4] BORODIN OV, 1989, MAT ZAMETKI, V46, P10
  • [5] HORNAK M, 1996, DISCUSS MATH GRAPH T, V16, P207
  • [6] IVANOV AB, 1984, MATH ENCY, V53, P463
  • [7] Kotzig A., 1963, Mat.-Fyz. Cas., V13, P20
  • [8] KOTZIG A, 1978, P 2 INT C COMB MATH, V319, P569
  • [9] Lebesgue H., 1940, J. Math. Pures Appl., V19, P27