Temperature Effect on the Synthesis of Multi-Walled Carbon Nanotubes by Spray Pyrolysis of Botanical Carbon Feedstocks: Turpentine, α-pinene and β-pinene

被引:10
作者
Lara-Romero, J. [1 ]
Calva-Yanez, J. C. [1 ]
Lopez-Tinoco, J. [1 ]
Alonso-Nunez, G. [2 ]
Jimenez-Sandoval, S. [3 ]
Paraguay-Delgado, F. [4 ]
机构
[1] Univ Michoacana, Fac Ingn Quim, Morelia 58060, Michoacan, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Nanociencia & Nanotecnol, Ensenada, Baja California, Mexico
[3] IPN, Ctr Invest & Estudios Avanzados, Unidad Queretaro, Mexico City, DF, Mexico
[4] CIMAV, Dept Quim Mat, Chihuahua, Mexico
关键词
Multi-walled carbon nanotubes; spray pyrolysis; turpentine; -pinene; LARGE-SCALE SYNTHESIS; NATURAL PRECURSOR; CAMPHOR; GROWTH; NANOFIBERS; OIL;
D O I
10.1080/1536383X.2010.494785
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chemistry of the different components of turpentine and the effect of temperature on the synthesis of multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis using ferrocene as catalyst in a temperature range of 700-1000 degrees C at 100 degrees C intervals was investigated. Turpentine with high -pinene concentration (83.4%) and low -pinene concentration (8.22%), as well as pure -pinene and -pinene, were used as carbon sources. The MWCNTs were analyzed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction and thermogravimetrical analysis. When using turpentine, the optimum temperature to produce high yields of crystalline MWCNTs was 800 degrees C. A comparative analysis between pure - and -pinene reveals that -pinene produces more crystalline MWCNTs than -pinene at 800 degrees C, indicating that -pinene is the active component in turpentine for the production of crystalline MWCNTs.
引用
收藏
页码:483 / 496
页数:14
相关论文
共 47 条
[41]   Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission [J].
Somani, Savita P. ;
Somani, Prakash R. ;
Tanemura, M. ;
Lau, S. P. ;
Umeno, M. .
CURRENT APPLIED PHYSICS, 2009, 9 (01) :144-150
[42]   The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins [J].
Stamatin, Ioan ;
Morozan, Adina ;
Dumitru, Anca ;
Ciupina, V. ;
Prodan, G. ;
Niewolski, J. ;
Figiel, H. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 37 (1-2) :44-48
[43]   Controlled production of aligned-nanotube bundles [J].
Terrones, M ;
Grobert, N ;
Olivares, J ;
Zhang, JP ;
Terrones, H ;
Kordatos, K ;
Hsu, WK ;
Hare, JP ;
Townsend, PD ;
Prassides, K ;
Cheetham, AK ;
Kroto, HW ;
Walton, DRM .
NATURE, 1997, 388 (6637) :52-55
[44]   Crystalline ropes of metallic carbon nanotubes [J].
Thess, A ;
Lee, R ;
Nikolaev, P ;
Dai, HJ ;
Petit, P ;
Robert, J ;
Xu, CH ;
Lee, YH ;
Kim, SG ;
Rinzler, AG ;
Colbert, DT ;
Scuseria, GE ;
Tomanek, D ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 1996, 273 (5274) :483-487
[45]   Spectroscopic Properties Unique to Nano-Emitters [J].
Walsh, Andrew G. ;
Bacsa, Wolfgang ;
Vamivakas, A. Nickolas ;
Swan, Anna K. .
NANO LETTERS, 2008, 8 (12) :4330-4334
[46]   Organized assembly of carbon nanotubes - Cunning refinements help to customize the architecture of nanotube structures. [J].
Wei, BQ ;
Vajtai, R ;
Jung, Y ;
Ward, J ;
Zhang, R ;
Ramanath, G ;
Ajayan, PM .
NATURE, 2002, 416 (6880) :495-496
[47]   Recent trends in the application of carbon nanotubes-polymer composite modified electrodes for biosensors: A review [J].
Yogeswaran, Umasankar ;
Chen, Shen-Ming .
ANALYTICAL LETTERS, 2008, 41 (02) :210-243