Co-regularized nonnegative matrix factorization for evolving community detection in dynamic networks

被引:21
|
作者
Ma, Xiaoke [1 ]
Zhang, Benhui [1 ]
Ma, Changzhou [1 ]
Ma, Zhiyu [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, 2 South Taibai Rd, Xian, Shaanxi, Peoples R China
关键词
Evolving community; Dynamic networks; Graph regularization; Nonnegative matrix factorization; DISCOVERY;
D O I
10.1016/j.ins.2020.04.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Community detection in static networks solely emphasizes the clustering accuracy, while evolving community detection in dynamic networks simultaneously takes into account both the clustering accuracy and clustering drift. The available evolutionary clustering algorithms are criticized for failing to fully characterize dynamics of networks and to accurately balance the clustering accuracy and clustering drift. To solve these problems, we propose a co-regularized evolutionary nonnegative matrix factorization for evolving communities in dynamic networks (Cr-ENMF). Specifically, both the network and communities at the previous time step are utilized to characterize the clustering drift, which are incorporated into the objective function of Cr-ENMF by regularization. We show that the well-known temporal smoothness framework for evolutionary clustering is a special case of the proposed framework, and prove the equivalence between Cr-ENMF and evolutionary clustering. Thereafter, an iterative strategy is presented to optimize the objective function. The experimental results over both artificial and real world dynamic networks illustrate that Cr-ENMF outperforms state-of-the-art approaches. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 50 条
  • [41] Tri-regularized nonnegative matrix tri-factorization for co-clustering
    Deng, Ping
    Li, Tianrui
    Wang, Hongjun
    Horng, Shi-Jinn
    Yu, Zeng
    Wang, Xiaomin
    KNOWLEDGE-BASED SYSTEMS, 2021, 226
  • [42] Detecting dynamic community by fusing network embedding and nonnegative matrix factorization
    Li, Dongyuan
    Zhong, Xiaoxiong
    Dou, Zengfa
    Gong, Maoguo
    Ma, Xiaoke
    KNOWLEDGE-BASED SYSTEMS, 2021, 221
  • [43] Entropy regularized fuzzy nonnegative matrix factorization for data clustering
    Kun Chen
    Junchen Liang
    Junmin Liu
    Weilin Shen
    Zongben Xu
    Zhengjian Yao
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 459 - 476
  • [44] Community detection algorithm based on nonnegative matrix factorization and pairwise constraints
    Lu, Hong
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Jianfeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545
  • [45] Variational Regularized 2-D Nonnegative Matrix Factorization
    Gao, Bin
    Woo, W. L.
    Dlay, S. S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (05) : 703 - 716
  • [46] Error Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Qiang Zhu
    Meijun Zhou
    Junping Liu
    Neural Processing Letters, 2023, 55 : 7321 - 7335
  • [47] SPATIAL GRAPH REGULARIZED NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Zhang, Hao
    Lei, Lin
    Zhang, Shaoquan
    Huang, Min
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1624 - 1627
  • [48] Error Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Zhu, Qiang
    Zhou, Meijun
    Liu, Junping
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7321 - 7335
  • [49] Improved hypergraph regularized Nonnegative Matrix Factorization with sparse representation
    Huang, Sheng
    Wang, Hongxing
    Ge, Yongxin
    Huangfu, Luwen
    Zhang, Xiaohong
    Yang, Dan
    PATTERN RECOGNITION LETTERS, 2018, 102 : 8 - 14
  • [50] Entropy regularized fuzzy nonnegative matrix factorization for data clustering
    Chen, Kun
    Liang, Junchen
    Liu, Junmin
    Shen, Weilin
    Xu, Zongben
    Yao, Zhengjian
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (02) : 459 - 476