Exact number of single bubbling solutions for elliptic problems of Ambrosetti-Prodi type

被引:7
作者
Guo, Yuxia [1 ]
Li, Benniao [2 ]
Yan, Shusen [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Univ New England, Dept Math, Armidale, NSW 2351, Australia
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
关键词
35J20; 35J60; LAZER-MCKENNA CONJECTURE; PEAK SOLUTIONS; UNIQUENESS; EQUATION;
D O I
10.1007/s00526-020-01744-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the local uniqueness of single bubbling solutions for elliptic problems of Ambrosetti-Prodi type with critical growth in a unit ball. As a result, we are able to count the exact number of single bubbling solutions for these type of elliptic problems.
引用
收藏
页数:44
相关论文
共 28 条
[1]   Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof [J].
Breuer, B ;
McKenna, PJ ;
Plum, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (01) :243-269
[2]  
Cao D., SINGULARLY PERTURBED
[3]   Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations [J].
Cao, Daomin ;
Li, Shuanglong ;
Luo, Peng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) :4037-4063
[4]   Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2861-2902
[5]   Existence and uniqueness results on Single-Peaked solutions of a semilinear problem [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01) :73-111
[6]  
Dancer EN, 2008, METHODS APPL ANAL, V15, P97
[7]   A COUNTEREXAMPLE TO THE LAZER-MCKENNA CONJECTURE [J].
DANCER, EN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (01) :19-21
[8]   On the superlinear Lazer-McKenna conjecture: Part II [J].
Dancer, EN ;
Yan, SS .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (09) :1331-1358
[9]   On the superlinear Lazer-McKenna conjecture [J].
Dancer, EN ;
Yan, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (02) :317-351
[10]  
De Figueiredo DG., 1999, Topol. Methods Nonlinear Anal, V14, P59, DOI DOI 10.12775/TMNA.1999.022