Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra

被引:30
作者
Liang, Junyi [1 ,2 ,3 ]
Xia, Jiangyang [4 ,5 ]
Shi, Zheng [1 ]
Jiang, Lifen [1 ,6 ,7 ]
Ma, Shuang [1 ,6 ,7 ]
Lu, Xingjie [1 ,6 ,7 ]
Mauritz, Marguerite [6 ,7 ]
Natali, Susan M. [8 ]
Pegoraro, Elaine [6 ,7 ]
Penton, Christopher Ryan [9 ,10 ]
Plaza, Cesar [6 ,7 ,11 ,12 ]
Salmon, Verity G. [2 ,3 ]
Celis, Gerardo [6 ,7 ]
Cole, James R. [13 ]
Konstantinidis, Konstantinos T. [14 ,15 ]
Tiedje, James M. [13 ]
Zhou, Jizhong [1 ,16 ,17 ,18 ]
Schuur, Edward A. G. [6 ,7 ]
Luo, Yiqi [1 ,6 ,7 ,19 ]
机构
[1] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
[2] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN USA
[3] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA
[4] East China Normal Univ, Sch Ecol & Environm Sci, Res Ctr Global Change & Ecol Forecasting, Tiantong Natl Stn Forest Ecosyst, Shanghai, Peoples R China
[5] IEC, Shanghai, Peoples R China
[6] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ USA
[7] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ USA
[8] Woods Hole Res Ctr, Falmouth, MA USA
[9] Arizona State Univ, Coll Integrat Sci & Arts, Mesa, AZ USA
[10] Arizona State Univ, Biodesign Inst, Ctr Fundamental & Appl Microbi, Tempe, AZ USA
[11] Univ Rey Juan Carlos, Escuela Super Ciencias Expt & Tecnol, Dept Biol & Geol, Fis & Quim Ingn, Mostoles, Spain
[12] CSIC, Inst Ciencias Agr, Madrid, Spain
[13] Michigan State Univ, Ctr Microbial Ecol, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
[14] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[15] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
[16] Univ Oklahoma, Inst Environm Gen, Norman, OK 73019 USA
[17] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China
[18] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA USA
[19] Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
acclimation; biotic responses; carbon modeling; climate warming; data assimilation; permafrost; soil carbon; PERMAFROST THAW; TEMPERATURE SENSITIVITY; ECOSYSTEM MODEL; CLIMATE-CHANGE; CO2; FLUX; DYNAMICS; RESPIRATION; PHOTOSYNTHESIS; ACCLIMATION; FEEDBACKS;
D O I
10.1111/gcb.14325
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over 5years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87g/m(2), respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions.
引用
收藏
页码:4946 / 4959
页数:14
相关论文
共 71 条
[1]   Soil-carbon response to warming dependent on microbial physiology [J].
Allison, Steven D. ;
Wallenstein, Matthew D. ;
Bradford, Mark A. .
NATURE GEOSCIENCE, 2010, 3 (05) :336-340
[2]   Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model [J].
Atkin, Owen K. ;
Atkinson, Lindsey J. ;
Fisher, Rosie A. ;
Campbell, Catherine D. ;
Zaragoza-Castells, Joana ;
Pitchford, Jon W. ;
Woodward, F. Ian ;
Hurry, Vaughan .
GLOBAL CHANGE BIOLOGY, 2008, 14 (11) :2709-2726
[3]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[4]   PHOTOSYNTHETIC RESPONSE AND ADAPTATION TO TEMPERATURE IN HIGHER-PLANTS [J].
BERRY, J ;
BJORKMAN, O .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :491-543
[5]   The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times [J].
Bloom, A. Anthony ;
Exbrayat, Jean-Francois ;
van der Velde, Ivar R. ;
Feng, Liang ;
Williams, Mathew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :1285-1290
[6]   A global prognostic scheme of leaf onset using satellite data [J].
Botta, A ;
Viovy, N ;
Ciais, P ;
Friedlingstein, P ;
Monfray, P .
GLOBAL CHANGE BIOLOGY, 2000, 6 (07) :709-725
[7]   Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations [J].
Bracho, Rosvel ;
Natali, Susan ;
Pegoraro, Elaine ;
Crummer, Kathryn G. ;
Schadel, Christina ;
Celis, Gerardo ;
Hale, Lauren ;
Wu, Liyou ;
Yin, Huaqun ;
Tiedje, James M. ;
Konstantinidis, Konstantinos T. ;
Luo, Yiqi ;
Zhou, Jizhong ;
Schuur, Edward A. G. .
SOIL BIOLOGY & BIOCHEMISTRY, 2016, 97 :1-14
[8]   Thermal adaptation of soil microbial respiration to elevated temperature [J].
Bradford, Mark A. ;
Davies, Christian A. ;
Frey, Serita D. ;
Maddox, Thomas R. ;
Melillo, Jerry M. ;
Mohan, Jacqueline E. ;
Reynolds, James F. ;
Treseder, Kathleen K. ;
Wallenstein, Matthew D. .
ECOLOGY LETTERS, 2008, 11 (12) :1316-1327
[9]   Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval [J].
Carvalhais, Nuno ;
Reichstein, Markus ;
Seixas, Julia ;
Collatz, G. James ;
Pereira, Joao Santos ;
Berbigier, Paul ;
Carrara, Arnaud ;
Granier, Andre ;
Montagnani, Leonardo ;
Papale, Dario ;
Rambal, Serge ;
Sanz, Maria Jose ;
Valentini, Riccardo .
GLOBAL BIOGEOCHEMICAL CYCLES, 2008, 22 (02)
[10]   The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics [J].
Clark, D. B. ;
Mercado, L. M. ;
Sitch, S. ;
Jones, C. D. ;
Gedney, N. ;
Best, M. J. ;
Pryor, M. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Blyth, E. ;
Boucher, O. ;
Harding, R. J. ;
Huntingford, C. ;
Cox, P. M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :701-722