Machine learning algorithms for predicting the amplitude of chaotic laser pulses

被引:67
作者
Amil, Pablo [1 ]
Soriano, Miguel C. [2 ]
Masoller, Cristina [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis, St Nebridi 22, Barcelona 08222, Spain
[2] UIB, CSIC, IFISC, Campus Univ Illes Balears, E-07122 Palma De Mallorca, Spain
基金
欧盟地平线“2020”;
关键词
PHOTONIC MICROWAVE GENERATION; INJECTED SEMICONDUCTOR-LASERS; NETWORK;
D O I
10.1063/1.5120755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Forecasting the dynamics of chaotic systems from the analysis of their output signals is a challenging problem with applications in most fields of modern science. In this work, we use a laser model to compare the performance of several machine learning algorithms for forecasting the amplitude of upcoming emitted chaotic pulses. We simulate the dynamics of an optically injected semiconductor laser that presents a rich variety of dynamical regimes when changing the parameters. We focus on a particular dynamical regime that can show ultrahigh intensity pulses, reminiscent of rogue waves. We compare the goodness of the forecast for several popular methods in machine learning, namely, deep learning, support vector machine, nearest neighbors, and reservoir computing. Finally, we analyze how their performance for predicting the height of the next optical pulse depends on the amount of noise and the length of the time series used for training. Published under license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 38 条
[1]  
ABUKHALAF M, 2006, ADV IND CON, P1
[2]   Roadmap on optical rogue waves and extreme events [J].
Akhmediev, Nail ;
Kibler, Bertrand ;
Baronio, Fabio ;
Belic, Milivoj ;
Zhong, Wei-Ping ;
Zhang, Yiqi ;
Chang, Wonkeun ;
Soto-Crespo, Jose M. ;
Vouzas, Peter ;
Grelu, Philippe ;
Lecaplain, Caroline ;
Hammani, K. ;
Rica, S. ;
Picozzi, A. ;
Tlidi, Mustapha ;
Panajotov, Krassimir ;
Mussot, Arnaud ;
Bendahmane, Abdelkrim ;
Szriftgiser, Pascal ;
Genty, Goery ;
Dudley, John ;
Kudlinski, Alexandre ;
Demircan, Ayhan ;
Morgner, Uwe ;
Amiraranashvili, Shalva ;
Bree, Carsten ;
Steinmeyer, Guenter ;
Masoller, C. ;
Broderick, Neil G. R. ;
Runge, Antoine F. J. ;
Erkintalo, Miro ;
Residori, S. ;
Bortolozzo, U. ;
Arecchi, F. T. ;
Wabnitz, Stefan ;
Tiofack, C. G. ;
Coulibaly, S. ;
Taki, M. .
JOURNAL OF OPTICS, 2016, 18 (06)
[3]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[4]  
[Anonymous], 2012, SEMICONDUCTOR LASERS
[5]  
[Anonymous], ARXIV191000659
[6]   Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks [J].
Ardalani-Farsa, Muhammad ;
Zolfaghari, Saeed .
NEUROCOMPUTING, 2010, 73 (13-15) :2540-2553
[7]   Data-driven prediction and prevention of extreme events in a spatially extended excitable system [J].
Bialonski, Stephan ;
Ansmann, Gerrit ;
Kantz, Holger .
PHYSICAL REVIEW E, 2015, 92 (04)
[8]   Predictability of Rogue Events [J].
Birkholz, Simon ;
Bree, Carsten ;
Demircan, Ayhan ;
Steinmeyer, Guenter .
PHYSICAL REVIEW LETTERS, 2015, 114 (21)
[9]   Deterministic Optical Rogue Waves [J].
Bonatto, Cristian ;
Feyereisen, Michael ;
Barland, Stephane ;
Giudici, Massimo ;
Masoller, Cristina ;
Rios Leite, Jose R. ;
Tredicce, Jorge R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (05)
[10]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401