Reclassifying stroke lesion anatomy

被引:19
作者
Bonkhoff, Anna K. [1 ,2 ]
Xu, Tianbo [2 ]
Nelson, Amy [2 ]
Gray, Robert [2 ]
Jha, Ashwani [2 ]
Cardoso, Jorge [3 ]
Ourselin, Sebastien [3 ]
Rees, Geraint [4 ]
Jager, Hans Rolf [2 ]
Nachev, Parashkev [2 ]
机构
[1] Harvard Med Sch, J Philip Kistler Stroke Res Ctr, Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02115 USA
[2] UCL, UCL Queen Sq Inst Neurol, London, England
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] UCL, Fac Life Sci, London, England
基金
英国惠康基金;
关键词
Stroke; Lesion anatomy; Lesion-deficit prediction; Dimensionality reduction; Brain imaging; HUMAN BRAIN-LESIONS; NONNEGATIVE MATRIX; CLASSIFICATION; ACCURACY; ALGORITHMS; PREDICTION; INFERENCE;
D O I
10.1016/j.cortex.2021.09.007
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models-for individual prediction or population-level inference-commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke-N = 1333-here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure-outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity. (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 56 条
[1]   Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data [J].
Abdelmoula, Walid M. ;
Balluff, Benjamin ;
Englert, Sonja ;
Dijkstra, Jouke ;
Reinders, Marcel J. T. ;
Walch, Axel ;
McDonnell, Liam A. ;
Lelieveldt, Boudewijn P. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) :12244-12249
[2]   CLASSIFICATION OF SUBTYPE OF ACUTE ISCHEMIC STROKE - DEFINITIONS FOR USE IN A MULTICENTER CLINICAL-TRIAL [J].
ADAMS, HP ;
BENDIXEN, BH ;
KAPPELLE, LJ ;
BILLER, J ;
LOVE, BB ;
GORDON, DL ;
MARSH, EE ;
KASE, CS ;
WOLF, PA ;
BABIKIAN, VL ;
LICATAGEHR, EE ;
ALLEN, N ;
BRASS, LM ;
FAYAD, PB ;
PAVALKIS, FJ ;
WEINBERGER, JM ;
TUHRIM, S ;
RUDOLPH, SH ;
HOROWITZ, DR ;
BITTON, A ;
MOHR, JP ;
SACCO, RL ;
CLAVIJO, M ;
ROSENBAUM, DM ;
SPARR, SA ;
KATZ, P ;
KLONOWSKI, E ;
CULEBRAS, A ;
CAREY, G ;
MARTIR, NI ;
FICARRA, C ;
HOGAN, EL ;
CARTER, T ;
GURECKI, P ;
MUNTZ, BK ;
RAMIREZLASSEPAS, M ;
TULLOCH, JW ;
QUINONES, MR ;
MENDEZ, M ;
ZHANG, SM ;
ALA, T ;
JOHNSTON, KC ;
ANDERSON, DC ;
TARREL, RM ;
NANCE, MA ;
BUDLIE, SR ;
DIERICH, M ;
HELGASON, CM ;
HIER, DB ;
SHAPIRO, RA .
STROKE, 1993, 24 (01) :35-41
[3]   Human Lesion Studies in the 21st Century [J].
Adolphs, Ralph .
NEURON, 2016, 90 (06) :1151-1153
[4]   New Approach to Stroke Subtyping: The A-S-C-O (Phenotypic) Classification of Stroke [J].
Amarenco, P. ;
Bogousslavsky, J. ;
Caplan, L. R. ;
Donnan, G. A. ;
Hennerici, M. G. .
CEREBROVASCULAR DISEASES, 2009, 27 (05) :502-508
[5]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[6]  
[Anonymous], 2009, ARTIF INTELL
[7]   The immune cell landscape in kidneys of patients with lupus nephritis [J].
Arazi, Arnon ;
Rao, Deepak A. ;
Berthier, Celine C. ;
Davidson, Anne ;
Liu, Yanyan ;
Hoover, Paul J. ;
Chicoine, Adam ;
Eisenhaure, Thomas M. ;
Jonsson, A. Helena ;
Li, Shuqiang ;
Lieb, David J. ;
Zhang, Fan ;
Slowikowski, Kamil ;
Browne, Edward P. ;
Noma, Akiko ;
Sutherby, Danielle ;
Steelman, Scott ;
Smilek, Dawn E. ;
Tosta, Patti ;
Apruzzese, William ;
Massarotti, Elena ;
Dall'Era, Maria ;
Park, Meyeon ;
Kamen, Diane L. ;
Furie, Richard A. ;
Payan-Schober, Fernanda ;
Pendergraft, William F., III ;
McInnis, Elizabeth A. ;
Buyon, Jill P. ;
Petri, Michelle A. ;
Putterman, Chaim ;
Kalunian, Kenneth C. ;
Woodle, E. Steve ;
Lederer, James A. ;
Hildeman, David A. ;
Nusbaum, Chad ;
Raychaudhuri, Soumya ;
Kretzler, Matthias ;
Anolik, Jennifer H. ;
Brenner, Michael B. ;
Wofsy, David ;
Hacohen, Nir ;
Diamond, Betty ;
Waguespack, Dia ;
Connery, Sean M. ;
McMahon, Maureen A. ;
McCune, William J. ;
Kado, Ruba B. ;
Hsu, Raymond ;
Cunningham, Melissa A. .
NATURE IMMUNOLOGY, 2019, 20 (07) :902-+
[8]   A Template and Probabilistic Atlas of the Human Sensorimotor Tracts using Diffusion MRI [J].
Archer, Derek B. ;
Vaillancourt, David E. ;
Coombes, Stephen A. .
CEREBRAL CORTEX, 2018, 28 (05) :1685-1699
[9]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[10]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828