Regression tree ensembles for wind energy and solar radiation prediction

被引:134
作者
Torres-Barran, Alberto [1 ]
Alonso, Alvaro [1 ]
Dorronsoro, Jose R. [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Ingn Informcit, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Inst Ingn Conocimiento, Madrid 28049, Spain
关键词
Ensembles; Regression; Random Forest; Gradient Boosting Regression; XGBoost; Wind energy; Solar radiation;
D O I
10.1016/j.neucom.2017.05.104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability of ensemble models to retain the bias of their learners while decreasing their individual variance has long made them quite attractive in a number of classification and regression problems. In this work we will study the application of Random Forest Regression (RFR), Gradient Boosted Regression (GBR) and Extreme Gradient Boosting (XGB) to global and local wind energy prediction as well as to a solar radiation problem. Besides a complete exploration of the fundamentals of RFR, GBR and XGB, we will show experimentally that ensemble methods can improve on Support Vector Regression (SVR) for individual wind farm energy prediction, that GBR and XGB are competitive when the interest lies in predicting wind energy in a much larger geographical scale and, finally, that both gradient-based ensemble methods can improve on SVR in the solar radiation problem. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [41] Solar Photovoltaic output prediction using Jackknife Regression
    Bhatti, Bilal Ahmad
    Broadwater, Robert
    2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [42] Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables
    Sun, Huaiwei
    Zhao, Na
    Zeng, Xiaofan
    Yan, Dong
    ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 880 - 890
  • [43] Multi-objective constrained optimization for energy applications via tree ensembles
    Thebelt, Alexander
    Tsay, Calvin
    Lee, Robert M.
    Sudermann-Merx, Nathan
    Walz, David
    Tranter, Tom
    Misener, Ruth
    APPLIED ENERGY, 2022, 306
  • [44] A multi-predictor model to estimate solar and wind energy generations
    Balali, Mohammad Hasan
    Nouri, Narjes
    Rashidi, Mohammad
    Nasiri, Adel
    Otieno, Wilkistar
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (02) : 696 - 706
  • [45] Optimized Random Forest for Solar Radiation Prediction Using Sunshine Hours
    Villegas-Mier, Cesar G.
    Rodriguez-Resendiz, Juvenal
    Manuel Alvarez-Alvarado, Jose
    Jimenez-Hernandez, Hugo
    Odry, Akos
    MICROMACHINES, 2022, 13 (09)
  • [46] Wind Turbine Noise Prediction Using Random Forest Regression
    Iannace, Gino
    Ciaburro, Giuseppe
    Trematerra, Amelia
    MACHINES, 2019, 7 (04)
  • [47] Wind Speed Prediction Based on Gradient Boosting Decision Tree
    Fan, Yuxiang
    Lei, Weixuan
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 93 - 97
  • [48] Contribution to the study of the wind and solar radiation over Guadeloupe
    Bertin, A.
    Frangi, J. P.
    ENERGY CONVERSION AND MANAGEMENT, 2013, 75 : 593 - 602
  • [49] GEOGRAPHIC MODELLING OF WIND AND SOLAR ENERGY POTENTIAL
    Celestino Reginato, Vivian da Silva
    Juliao, Rui Pedro
    BOLETIM DE CIENCIAS GEODESICAS, 2019, 25 (03):
  • [50] On the environmental information for solar and wind energy facilities
    Weng FuZhong
    Liu QuanHua
    Zou XiaoLei
    SCIENCE CHINA-EARTH SCIENCES, 2012, 55 (05) : 796 - 801