Regression tree ensembles for wind energy and solar radiation prediction

被引:140
作者
Torres-Barran, Alberto [1 ]
Alonso, Alvaro [1 ]
Dorronsoro, Jose R. [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Ingn Informcit, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Inst Ingn Conocimiento, Madrid 28049, Spain
关键词
Ensembles; Regression; Random Forest; Gradient Boosting Regression; XGBoost; Wind energy; Solar radiation;
D O I
10.1016/j.neucom.2017.05.104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability of ensemble models to retain the bias of their learners while decreasing their individual variance has long made them quite attractive in a number of classification and regression problems. In this work we will study the application of Random Forest Regression (RFR), Gradient Boosted Regression (GBR) and Extreme Gradient Boosting (XGB) to global and local wind energy prediction as well as to a solar radiation problem. Besides a complete exploration of the fundamentals of RFR, GBR and XGB, we will show experimentally that ensemble methods can improve on Support Vector Regression (SVR) for individual wind farm energy prediction, that GBR and XGB are competitive when the interest lies in predicting wind energy in a much larger geographical scale and, finally, that both gradient-based ensemble methods can improve on SVR in the solar radiation problem. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 19 条
[1]   ANN-based modelling and estimation of daily global solar radiation data: A case study [J].
Benghanem, M. ;
Mellit, A. ;
Alamri, S. N. .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (07) :1644-1655
[2]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]   Current methods and advances in forecasting of wind power generation [J].
Foley, Aoife M. ;
Leahy, Paul G. ;
Marvuglia, Antonino ;
McKeogh, Eamon J. .
RENEWABLE ENERGY, 2012, 37 (01) :1-8
[7]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[8]   Stochastic gradient boosting [J].
Friedman, JH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) :367-378
[9]  
Han S., 2011, POW EN ENG C APPEEC, P1
[10]  
Hastie T., 2009, Springer Series in Statistics, DOI DOI 10.1007/B94608