Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

被引:96
作者
Hou, Huilong [1 ]
Simsek, Emrah [2 ]
Stasak, Drew [1 ]
Al Hasan, Naila [1 ]
Qian, Suxin [3 ]
Ott, Ryan [2 ]
Cui, Jun [2 ,4 ]
Takeuchi, Ichiro [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] US DOE, Ames Lab, Ames, IA 50011 USA
[3] Xi An Jiao Tong Univ, Dept Refrigerat & Cryogen Engn, Xian 710049, Shaanxi, Peoples R China
[4] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
additive manufacturing; three-dimensional (3D) printing; shape memory alloys; elastocaloric cooling; latent heat; linear superelasticity; LOW MODULUS; NITI; FILMS; SUPERELASTICITY; MICROSTRUCTURE; OPTIMIZATION; FABRICATION; EVOLUTION; STRAIN; MATRIX;
D O I
10.1088/1361-6463/aa85bf
中图分类号
O59 [应用物理学];
学科分类号
摘要
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g(-1). Adiabatic compression on as-fabricated TiNi displays cooling Delta T as high as -7.5 degrees C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.
引用
收藏
页数:10
相关论文
共 68 条
[1]  
[Anonymous], 2004, ASTM STAND, V5, P1
[2]   Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants [J].
Bandyopadhyay, Amit ;
Krishna, B. V. ;
Xue, Weichang ;
Bose, Susmita .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 :29-34
[3]   High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films [J].
Bechtold, C. ;
Chluba, C. ;
De Miranda, R. Lima ;
Quandt, E. .
APPLIED PHYSICS LETTERS, 2012, 101 (09)
[4]   Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition [J].
Bimber, Beth A. ;
Hamilton, Reginald F. ;
Keist, Jayme ;
Palmer, Todd A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 674 :125-134
[5]   Elastocaloric effect associated with the martensitic transition in shape-memory alloys [J].
Bonnot, Erell ;
Romero, Ricardo ;
Manosa, Lluis ;
Vives, Eduard ;
Planes, Antoni .
PHYSICAL REVIEW LETTERS, 2008, 100 (12)
[6]   Review of alternative cooling technologies [J].
Brown, J. Steven ;
Domanski, Piotr A. .
APPLIED THERMAL ENGINEERING, 2014, 64 (1-2) :252-262
[7]   Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy [J].
Castillo-Villa, Pedro O. ;
Manosa, Lluis ;
Planes, Antoni ;
Soto-Parra, Daniel E. ;
Sanchez-Llamazares, J. L. ;
Flores-Zuniga, H. ;
Frontera, Carlos .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (05)
[8]   Size effects in shape memory alloy microwires [J].
Chen, Ying ;
Schuh, Christopher A. .
ACTA MATERIALIA, 2011, 59 (02) :537-553
[9]   Ultra-Low Fatigue Quaternary TiNi-Based Films for Elastocaloric Cooling [J].
Chluba C. ;
Ossmer H. ;
Zamponi C. ;
Kohl M. ;
Quandt E. .
Shape Memory and Superelasticity, 2016, 2 (01) :95-103
[10]   TIPS AND TRICKS FOR CHARACTERIZING SHAPE MEMORY ALLOY WIRE: PART 2-FUNDAMENTAL ISOTHERMAL RESPONSES [J].
Churchill, C. B. ;
Shaw, J. A. ;
Iadicola, M. A. .
EXPERIMENTAL TECHNIQUES, 2009, 33 (01) :51-62