To increase electrochemical performance of electrode material by attaching activated carbon particles on reduced graphene oxide sheets for supercapacitor

被引:50
|
作者
Wang, Jiaqi [1 ]
Li, Qiang [1 ]
Peng, Cheng [1 ]
Shu, Na [2 ,3 ]
Niu, Liang [1 ]
Zhu, Yanwu [2 ,3 ]
机构
[1] Hefei Univ Technol, Sch Elect Sci & Appl Phys, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Reduced graphene oxide; Activated carbon particles; Synergistic effect; Low cost; Supercapacitor; COMPOSITE ELECTRODES; SURFACE-AREA; HIGH-POWER; ENERGY; CAPACITANCE; PROGRESS; DENSITY; STORAGE; ANODES; WASTE;
D O I
10.1016/j.jpowsour.2019.227611
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A convenient and scalable method is developed to attach the activated carbon particles (ACP) on the surface of reduced graphene oxide (rGO) sheets. The rGO sheets are beneficial for improving the electrochemical performance of the ACP, while ACP can effectively suppress the aggregation of the rGO sheets. Therefore, the symmetric supercapacitor based on this composite (RGO-ACP3) electrode delivers high specific capacitance of 116.88 F g(-1) at current density of 0.5 A g(-1) in 1 M H2SO4 electrolyte, and has a high capacitance retention of 97.85% after 8000 cycles at 5 A g(-1). More importantly, from the perspective of ACP, adding a portion of rGO to three low-cost ACP can increase the specific capacitance of the electrode material by 58.2%. It also provides high energy density of 11.90 W h kg(-1) at power density of 469.24 W kg(-1) in 1 M Na2SO4 electrolyte. In addition, the special capacitance contributed byrGO in the RGO-ACP15 reaches up to 541 F g(-1) at 0.5 A g(-1) in 1 M H2SO4. The results indicate that the synergistic effect betweenrGO sheets and ACP,makes RGO-ACP3 a promising low cost electrode material for high performance supercapacitors.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Role of deposition temperature on physical and electrochemical performance of manganese oxide electrode material for supercapacitor application
    Kadam, Snehal L.
    Ingole, Rahul S.
    Tiwari, Nidhi G.
    Nakate, Umesh T.
    Nakate, Yogesh. T.
    Kulkarni, Shrinivas B.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 285
  • [32] Electrochemical performance of Quercus infectoria as a supercapacitor carbon electrode material
    Akdemir, Murat
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (06) : 7722 - 7731
  • [33] Production of nanoarchitectonics corncob activated carbon as electrode material for enhanced supercapacitor performance
    Ortiz-Olivares, Rich David
    Lobato-Peralta, Diego Ramon
    Arias, D. M.
    Okolie, Jude A.
    Cuentas-Gallegos, Ana Karina
    Sebastian, P. J.
    Mayer, Adriana Reyes
    Okoye, Patrick U.
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [34] Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor
    Oyedotun, K. O.
    Madito, M. J.
    Bello, A.
    Momodu, D. Y.
    Mirghni, A. A.
    Manyala, N.
    ELECTROCHIMICA ACTA, 2017, 245 : 260 - 270
  • [35] Effect of Nano-Scale Characteristics of Graphene on Electrochemical Performance of Activated Carbon Supercapacitor Electrodes
    Jasni, M. R. M.
    Deraman, M.
    Suleman, M.
    Hamdan, E.
    Sazali, N. E. S.
    Nor, N. S. M.
    Shamsudin, S. A.
    6TH NANOSCIENCE AND NANOTECHNOLOGY SYMPOSIUM (NNS2015), 2016, 1710
  • [36] Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application
    Numan, Arshid
    Duraisamy, Navaneethan
    Omar, Fatin Saiha
    Mahipal, Y. K.
    Ramesh, K.
    Ramesh, S.
    RSC ADVANCES, 2016, 6 (41): : 34894 - 34902
  • [37] Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor
    Mohammad Bagher Bakhshandeh
    Elaheh Kowsari
    Research on Chemical Intermediates, 2020, 46 : 2595 - 2612
  • [38] Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor
    Bakhshandeh, Mohammad Bagher
    Kowsari, Elaheh
    RESEARCH ON CHEMICAL INTERMEDIATES, 2020, 46 (05) : 2595 - 2612
  • [39] Optical, chemical bonding and electrochemical properties of vanadium pentoxide/reduced graphene oxide nanocomposite for supercapacitor electrode material
    Chanu, Sagolsem Nonganbi
    Sushma, Pukhrambam
    Swain, Bhabani Sankar
    Swain, Bibhu Prasad
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (26) : 20487 - 20497
  • [40] Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material
    Teimuri-Mofrad, Reza
    Hadi, Raha
    Abbasi, Hassan
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2019, 880 : 355 - 362