Wronskians and Linear Independence

被引:42
作者
Bostan, Alin [1 ]
Dumas, Philippe [1 ]
机构
[1] Inria Paris Rocquencourt, Algorithms Project, F-78153 Le Chesnay, France
关键词
D O I
10.4169/000298910X515785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new and simple proof of the fact that a finite family of analytic functions has a zero Wronskian only if it is linearly dependent.
引用
收藏
页码:722 / 727
页数:6
相关论文
共 24 条
[11]  
HINDRY M, 2000, GRAD TEXT M, V201, P1
[12]  
Hurewicz W., 1958, Lectures in Ordinary Differential Equations
[13]  
Kaplansky I., 1976, An Introduction to Differential Algebra
[14]  
Kiselev A. V., 2007, J MATH SCI, V141, P1016, DOI DOI 10.1007/S10958-007-0028-2
[15]   WHY DOES THE WRONSKIAN WORK [J].
KRUSEMEYER, M .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (01) :46-49
[16]  
LeVeque W.J, 2002, Topics in Number Theory, VII
[17]  
Magid A. R., 1994, U LECT SERIES, V7
[18]  
Mahler K., 1961, LECT DIOPHANTINE A 1
[19]   WARING PROBLEM FOR THE RING OF POLYNOMIALS [J].
NEWMAN, DJ ;
SLATER, M .
JOURNAL OF NUMBER THEORY, 1979, 11 (04) :477-487
[20]   On an analogue of Wronski's determinant in multiple variable functions [J].
Ostrowski, A .
MATHEMATISCHE ZEITSCHRIFT, 1919, 4 :223-230