Control Functionals for Quasi-Monte Carlo Integration

被引:0
作者
Oates, Chris J. [1 ]
Girolami, Mark [2 ,3 ]
机构
[1] Univ Technol Sydney, Sydney, NSW, Australia
[2] Univ Warwick, Warwick, England
[3] Alan Turing Inst Data Sci, London, England
来源
ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51 | 2016年 / 51卷
基金
英国工程与自然科学研究理事会;
关键词
APPROXIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quasi-Monte Carlo (QMC) methods are being adopted in statistical applications due to the increasingly challenging nature of numerical integrals that are now routinely encountered. For integrands with d-dimensions and derivatives of order alpha, an optimal QMC rule converges at a best-possible rate O(N-alpha/d). However, in applications the value of alpha can be unknown and/or a rate-optimal QMC rule can be unavailable. Standard practice is to employ alpha(L)-optimal QMC where the lower bound alpha(L) <= alpha is known, but in general this does not exploit the full power of QMC. One solution is to trade-off numerical integration with functional approximation. This strategy is explored herein and shown to be well-suited to modern statistical computation. A challenging application to robotic arm data demonstrates a substantial variance reduction in predictions for mechanical torques.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 35 条
[1]   Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequlity [J].
Aistleitner, Christoph ;
Dick, Josef .
ACTA ARITHMETICA, 2015, 167 (02) :143-171
[2]  
[Anonymous], GAUSSIAN PROCESSES M
[3]  
Bach F., 2015, ARXIV150206800
[4]   On the approximate calculation of multiple integrals [J].
Bakhvalov, Nikolai Sergeevich .
JOURNAL OF COMPLEXITY, 2015, 31 (04) :502-516
[5]  
Briol F.X., 2016, ARXIV151200933
[6]  
Cockayne J., UNPUB
[7]  
Dick J., 2010, DISCREPANCY THEORY Q
[8]   High-dimensional integration: The quasi-Monte Carlo way [J].
Dick, Josef ;
Kuo, Frances Y. ;
Sloan, Ian H. .
ACTA NUMERICA, 2013, 22 :133-288
[9]   HIGHER ORDER SCRAMBLED DIGITAL NETS ACHIEVE THE OPTIMAL RATE OF THE ROOT MEAN SQUARE ERROR FOR SMOOTH INTEGRANDS [J].
Dick, Josef .
ANNALS OF STATISTICS, 2011, 39 (03) :1372-1398
[10]  
FASSHAUER G. E., 2007, Meshfree Approximation Methods in MATLAB, Interdisciplinary Mathematical Sciences, V6