Core Imaging Library-Part I: a versatile Python']Python framework for tomographic imaging

被引:34
作者
Jorgensen, J. S. [1 ,7 ]
Ametova, E. [2 ,5 ]
Burca, G. [3 ,7 ]
Fardell, G. [4 ]
Papoutsellis, E. [4 ,5 ]
Pasca, E. [4 ]
Thielemans, K. [8 ,9 ]
Turner, M. [6 ]
Warr, R. [5 ]
Lionheart, W. R. B. [7 ]
Withers, P. J. [5 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
[2] Karlsruhe Inst Technol, Lab Applicat Synchrotron Radiat, Karlsruhe, Germany
[3] UKRI, STFC, ISIS Neutron & Muon Source, Didcot, Oxon, England
[4] Rutherford Appleton Lab, STFC, Sci Comp Dept, UKRI, Didcot, Oxon, England
[5] Univ Manchester, Henry Royce Inst, Dept Mat, Manchester, Lancs, England
[6] Univ Manchester, Res IT Serv, Manchester, Lancs, England
[7] Univ Manchester, Dept Math, Manchester, Lancs, England
[8] UCL, Inst Nucl Med, London, England
[9] UCL, Ctr Med Image Comp, London, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2204期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
computed tomography; X-ray CT; convex optimization; software; image reconstruction; CONVEX-OPTIMIZATION; RECONSTRUCTION; ALGORITHMS;
D O I
10.1098/rsta.2020.0192
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-channel data arising for example in dynamic, spectral and in situ tomography. CIL provides an extensive modular optimization framework for prototyping reconstruction methods including sparsity and total variation regularization, as well as tools for loading, preprocessing and visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron example dataset and three challenging cases spanning golden-ratio neutron tomography, cone-beam X-ray laminography and positron emission tomography. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
引用
收藏
页数:24
相关论文
共 53 条
[1]  
Adler J., 2018, ODLGROUPODL ODL 070, DOI [10.5281/zenodo.1442734, DOI 10.5281/ZENODO.1442734]
[2]  
Ametova E., 2021, **DATA OBJECT**, DOI 10.5281/zenodo.4746198
[3]   Crystalline phase discriminating neutron tomography using advanced reconstruction methods [J].
Ametova, Evelina ;
Burca, Genoveva ;
Chilingaryan, Suren ;
Fardell, Gemma ;
Jorgensen, Jakob S. ;
Papoutsellis, Evangelos ;
Pasca, Edoardo ;
Warr, Ryan ;
Turner, Martin ;
Lionheart, William R. B. ;
Withers, Philip J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (32)
[4]  
[Anonymous], 2007, NEMA Standards Publication NU 2-2007 Performance Measurements of Positron Emission Tomographs
[5]   Solving inverse problems using data-driven models [J].
Arridge, Simon ;
Maass, Peter ;
Oktem, Ozan ;
Schonlieb, Carola-Bibiane .
ACTA NUMERICA, 2019, 28 :1-174
[6]   A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source [J].
Atwood, Robert C. ;
Bodey, Andrew J. ;
Price, Stephen W. T. ;
Basham, Mark ;
Drakopoulos, Michael .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2043)
[7]  
Basham M., 2015, 24737 FD NXS DIAMOND
[8]   FOM - a MATLAB toolbox of first-order methods for solving convex optimization problems [J].
Beck, Amir ;
Guttmann-Beck, Nili .
OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (01) :172-193
[9]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[10]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202