Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage

被引:27
作者
Sarkar, N
Lemaire, S
Wu-Scharf, D
Issakidis-Bourguet, E
Cerutti, H
机构
[1] Univ Nebraska, Sch Biol Sci & Plant Sci Initiat, Beadle Ctr E211, Lincoln, NE 68588 USA
[2] Univ Paris 11, CNRS, Inst Biotechnol Plantes, UMR 8618, F-91405 Orsay, France
关键词
D O I
10.1128/EC.4.2.262-273.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
DNA damage occurs as a by-product of intrinsic cellular processes, like DNA replication, or as a consequence of exposure to genotoxic agents. Organisms have evolved multiple mechanisms to avoid, tolerate, or repair DNA lesions. To gain insight into these processes, we have isolated mutants hypersensitive to DNA-damaging agents in the green alga Chlamydomonas reinhardtii. One mutant, Ble-1, showed decreased survival when it was treated with methyl methanesulfonate (MMS), bleomycin, or hydrogen peroxide (H2O2) but behaved like the wild type when it was exposed to UVC irradiation. Ble-1 carries an extensive chromosomal deletion that includes the gene encoding cytosollic thioredoxin h1 (Trxh1). Transformation of Ble-1 with a wild-type copy of Trxh1 fully corrected the MMS hypersensitivity and partly restored the tolerance to bleomycin. Trxh1 also complemented a defect in the repair of MMS-induced DNA strand breaks and alkali-labile sites. In addition, a Trxh1-beta-glucuronidase fusion protein translocated to the nucleus in response to treatment with MMS. However, somewhat surprisingly, Trxh1. failed to correct the Ble-1 hypersensitivity to H2O2. Moreover, Trxh1 suppression by RNA interference in a wild-type strain resulted in enhanced sensitivity to MMS and DNA repair defects but no increased cytotoxicity to H2O2. Thioredoxins have been implicated in oxidative-stress responses in many organisms. Yet our results indicate a specific role of Chlamydomonas Trxh1 in the repair of MMS-induced DNA damage, whereas it is dispensable for the response to H2O2. These observations also suggest functional specialization among cytosolic thioredoxins since another Chlamydomonas isoform (Trxh2) does not compensate for the lack of Trxh1.
引用
收藏
页码:262 / 273
页数:12
相关论文
共 83 条
[1]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[2]  
Åslund F, 1999, J BACTERIOL, V181, P1375
[3]   Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria [J].
Balmer, Y ;
Vensel, WH ;
Tanaka, CK ;
Hurkman, WJ ;
Gelhaye, E ;
Rouhier, N ;
Jacquot, JP ;
Manieri, W ;
Schüurmann, P ;
Droux, M ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2642-2647
[4]   Abasic sites in DNA:: repair and biological consequences in Saccharomyces cerevisiae [J].
Boiteux, S ;
Guillet, M .
DNA REPAIR, 2004, 3 (01) :1-12
[5]   Molecular genetics of DNA repair in higher plants [J].
Britt, AB .
TRENDS IN PLANT SCIENCE, 1999, 4 (01) :20-25
[6]   CELLULAR GLUTATHIONE (GSH) AND GLUTATHIONE-S-TRANSFERASE (GST) ACTIVITY IN HUMAN OVARIAN TUMOR-BIOPSIES FOLLOWING EXPOSURE TO ALKYLATING-AGENTS [J].
BRITTEN, RA ;
GREEN, JA ;
WARENIUS, HM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1992, 24 (03) :527-531
[7]   THIOREDOXIN - A MULTIFUNCTIONAL REGULATORY PROTEIN WITH A BRIGHT FUTURE IN TECHNOLOGY AND MEDICINE [J].
BUCHANAN, BB ;
SCHURMANN, P ;
DECOTTIGNIES, P ;
LOZANO, RM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 314 (02) :257-260
[8]  
CERUTTI H, 1995, MOL CELL BIOL, V15, P3003
[9]  
Chasseaud L F, 1979, Adv Cancer Res, V29, P175, DOI 10.1016/S0065-230X(08)60848-9
[10]   Global transcriptional responses of fission yeast to environmental stress [J].
Chen, DR ;
Toone, WM ;
Mata, J ;
Lyne, R ;
Burns, G ;
Kivinen, K ;
Brazma, A ;
Jones, N ;
Bähler, J .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (01) :214-229