Structured Stochastic Variational Inference

被引:0
|
作者
Hoffman, Matthew D. [1 ]
Blei, David M. [2 ,3 ]
机构
[1] Adobe Res, San Jose, CA 95110 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
来源
ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38 | 2015年 / 38卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic variational inference makes it possible to approximate posterior distributions induced by large datasets quickly using stochastic optimization. The algorithm relies on the use of fully factorized variational distributions. However, this "mean-field" independence approximation limits the fidelity of the posterior approximation, and introduces local optima. We show how to relax the mean-field approximation to allow arbitrary dependencies between global parameters and local hidden variables, producing better parameter estimates by reducing bias, sensitivity to local optima, and sensitivity to hyperparameters.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 50 条
  • [1] Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1303 - 1347
  • [2] Stochastic variational inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    1600, Microtome Publishing (14): : 1303 - 1347
  • [3] Automatic structured variational inference
    Ambrogioni, Luca
    Lin, Kate
    Fertig, Emily
    Vikram, Sharad
    Hinne, Max
    Moore, Dave
    van Gerven, Marcel
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 676 - +
  • [4] Accelerated Stochastic Variational Inference
    Hu, Pingbo
    Weng, Yang
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1275 - 1282
  • [5] Training Variational Autoencoders with Buffered Stochastic Variational Inference
    Shu, Rui
    Bui, Hung H.
    Whang, Jay
    Ermon, Stefano
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [6] Smoothed Gradients for Stochastic Variational Inference
    Mandt, Stephan
    Blei, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [7] Stochastic Variational Inference with Gradient Linearization
    Ploetz, Tobias
    Wannenwetsch, Anne S.
    Roth, Stefan
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1566 - 1575
  • [8] Stochastic variational inference for GARCH models
    Xuan H.
    Maestrini L.
    Chen F.
    Grazian C.
    Statistics and Computing, 2024, 34 (1)
  • [9] A Filtering Approach to Stochastic Variational Inference
    Houlsby, Neil M. T.
    Blei, David M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [10] Variational Inference for Stochastic Differential Equations
    Opper, Manfred
    ANNALEN DER PHYSIK, 2019, 531 (03)