Rare variant association analysis in case-parents studies by allowing for missing parental genotypes

被引:2
|
作者
Li, Yumei [1 ,2 ]
Xiang, Yang [1 ]
Xu, Chao [2 ]
Shen, Hui [2 ]
Deng, Hongwen [2 ,3 ]
机构
[1] Huaihua Univ, Sch Math & Computat Sci, Huaihua 418008, Hunan, Peoples R China
[2] Tulane Univ, Ctr Bioinformat & Genom, Dept Global Biostat & Data Sci, New Orleans, LA 70112 USA
[3] Tulane Univ, Sch Publ Hlth & Trop Med, Ctr Bioinformat & Genom, New Orleans, LA 70112 USA
来源
BMC GENETICS | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
Rare-variant association analysis; Case-parent trios; Collapsing method; FAMILY-BASED DESIGNS; SEQUENCE DATA; DISEASE ASSOCIATIONS; GENETIC ASSOCIATION; DISEQUILIBRIUM TEST; COMMON VARIANTS; DETECTING RARE; POPULATIONS; NUCLEAR; TESTS;
D O I
10.1186/s12863-018-0597-8
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: The development of next-generation sequencing technologies has facilitated the identification of rare variants. Family-based design is commonly used to effectively control for population admixture and substructure, which is more prominent for rare variants. Case-parents studies, as typical strategies in family-based design, are widely used in rare variant-disease association analysis. Current methods in case-parents studies are based on complete case-parents data; however, parental genotypes may be missing in case-parents trios, and removing these data may lead to a loss in statistical power. The present study focuses on testing for rare variant-disease association in case-parents study by allowing for missing parental genotypes. Results: In this report, we extended the collapsing method for rare variant association analysis in case-parents studies to allow for missing parental genotypes, and investigated the performance of two methods by using the difference of genotypes between affected offspring and their corresponding "complements" in case-parent trios and TDT framework. Using simulations, we showed that, compared with the methods just only using complete case-parents data, the proposed strategy allowing for missing parental genotypes, or even adding unrelated affected individuals, can greatly improve the statistical power and meanwhile is not affected by population stratification. Conclusions: We conclude that adding case-parents data with missing parental genotypes to complete case-parents data set can greatly improve the power of our strategy for rare variant-disease association.
引用
收藏
页数:8
相关论文
共 45 条
  • [21] Family-Based Rare Variant Association Analysis: A Fast and Efficient Method of Multivariate Phenotype Association Analysis
    Wang, Longfei
    Lee, Sungyoung
    Gim, Jungsoo
    Qiao, Dandi
    Cho, Michael
    Elston, Robert C.
    Silverman, Edwin K.
    Won, Sungho
    GENETIC EPIDEMIOLOGY, 2016, 40 (06) : 502 - 511
  • [22] Model-Based Multifactor Dimensionality Reduction for Rare Variant Association Analysis
    Fouladi, Ramouna
    Bessonov, Kyrylo
    Van Lishout, Francois
    Van Steen, Kristel
    HUMAN HEREDITY, 2015, 79 (3-4) : 157 - 167
  • [23] Statistical analysis strategies for association studies involving rare variants
    Bansal, Vikas
    Libiger, Ondrej
    Torkamani, Ali
    Schork, Nicholas J.
    NATURE REVIEWS GENETICS, 2010, 11 (11) : 773 - 785
  • [24] Robust joint analysis allowing for model uncertainty in two-stage genetic association studies
    Pan, Dongdong
    Li, Qizhai
    Jiang, Ningning
    Liu, Aiyi
    Yu, Kai
    BMC BIOINFORMATICS, 2011, 12
  • [25] Analysis of Case-Control Association Studies: SNPs, Imputation and Haplotypes
    Chatterjee, Nilanjan
    Chen, Yi-Hau
    Luo, Sheng
    Carroll, Raymond J.
    STATISTICAL SCIENCE, 2009, 24 (04) : 489 - 502
  • [26] Rare variant analysis in multiply affected families, association studies and functional analysis suggest a role for the ITGB4 gene in schizophrenia and bipolar disorder
    O'Brien, N. L.
    Fiorentino, A.
    Curtis, D.
    Rayner, C.
    Petrosellini, C.
    Al Eissa, M.
    Bass, N. J.
    McQuillin, A.
    Sharp, S. I.
    SCHIZOPHRENIA RESEARCH, 2018, 199 : 181 - 188
  • [27] Taking population stratification into account by local permutations in rare-variant association studies on small samples
    Mullaert, Jimmy
    Bouaziz, Matthieu
    Seeleuthner, Yoann
    Bigio, Benedetta
    Casanova, Jean-Laurent
    Alcais, Alexandre
    Abel, Laurent
    Cobat, Aurelie
    GENETIC EPIDEMIOLOGY, 2021, 45 (08) : 821 - 829
  • [28] Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale
    Li, Xihao
    Li, Zilin
    Zhou, Hufeng
    Gaynor, Sheila M.
    Liu, Yaowu
    Chen, Han
    Sun, Ryan
    Dey, Rounak
    Arnett, Donna K.
    Aslibekyan, Stella
    Ballantyne, Christie M.
    Bielak, Lawrence F.
    Blangero, John
    Boerwinkle, Eric
    Bowden, Donald W.
    Broome, Jai G.
    Conomos, Matthew P.
    Correa, Adolfo
    Cupples, L. Adrienne
    Curran, Joanne E.
    Freedman, Barry I.
    Guo, Xiuqing
    Hindy, George
    Irvin, Marguerite R.
    Kardia, Sharon L. R.
    Kathiresan, Sekar
    Khan, Alyna T.
    Kooperberg, Charles L.
    Laurie, Cathy C.
    Liu, X. Shirley
    Mahaney, Michael C.
    Manichaikul, Ani W.
    Martin, Lisa W.
    Mathias, Rasika A.
    McGarvey, Stephen T.
    Mitchell, Braxton D.
    Montasser, May E.
    Moore, Jill E.
    Morrison, Alanna C.
    O'Connell, Jeffrey R.
    Palmer, Nicholette D.
    Pampana, Akhil
    Peralta, Juan M.
    Peyser, Patricia A.
    Psaty, Bruce M.
    Redline, Susan
    Rice, Kenneth M.
    Rich, Stephen S.
    Smith, Jennifer A.
    Tiwari, Hemant K.
    NATURE GENETICS, 2020, 52 (09) : 969 - +
  • [29] Rare-variant association tests in longitudinal studies, with an application to the Multi-Ethnic Study of Atherosclerosis (MESA)
    He, Zihuai
    Lee, Seunggeun
    Zhang, Min
    Smith, Jennifer A.
    Guo, Xiuqing
    Palmas, Walter
    Kardia, Sharon L. R.
    Ionita-Laza, Iuliana
    Mukherjee, Bhramar
    GENETIC EPIDEMIOLOGY, 2017, 41 (08) : 801 - 810
  • [30] Real world scenarios in rare variant association analysis: the impact of imbalance and sample size on the power in silico
    Xinyuan Zhang
    Anna O. Basile
    Sarah A. Pendergrass
    Marylyn D. Ritchie
    BMC Bioinformatics, 20