An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component

被引:14
作者
Zhang, Zujin [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 04期
关键词
Regularity criteria; Navier-Stokes equations; Weak solutions; WEAK SOLUTIONS;
D O I
10.1007/s00033-015-0500-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns about the Cauchy problem for the three-dimensional Navier-Stokes equations and provides a regularity criterion in terms of the gradient of one velocity component. This improves previous results.
引用
收藏
页码:1707 / 1715
页数:9
相关论文
共 29 条
[1]  
[Anonymous], ARXIV13106442MATHAP
[2]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[3]  
Constantin P., 1988, CHICAGO LECT MATH SE
[4]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[5]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[6]  
Hopf Eberhard, 1951, Math. Nachr., V4, P213, DOI DOI 10.1002/MANA.3210040121
[7]   Remarks on regularity criteria for the Navier-Stokes equations via one velocity component [J].
Jia, Xuanji ;
Zhou, Yong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 :239-245
[8]   One component regularity for the Navier-Stokes equations [J].
Kukavica, I ;
Ziane, M .
NONLINEARITY, 2006, 19 (02) :453-469
[9]   Navier-Stokes equations with regularity in one direction [J].
Kukavica, Igor ;
Ziane, Mohammed .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[10]  
Ladyzhenskaya O. A., 1970, MATH THEORY VISCOUS